Expressivity and Complexity of ReLU Neural Netowrks

PhD Defense

Moritz Grillo

Technische Universität Berlin

October 02, 2025

Motivation

Al is moving fast

- Astonishing progress in artificial intelligence
- Neural networks are at the heart of this development
- Theoretical foundations far behind success in practice

Motivation

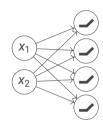
Al is moving fast

- Astonishing progress in artificial intelligence
- Neural networks are at the heart of this development
- Theoretical foundations far behind success in practice

This Thesis:

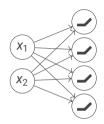
- What are the fundamental capabilities and limitations of neural networks?
- Focus on ReLU neural networks

ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$



ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d \to \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

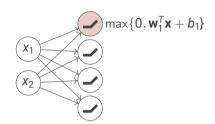


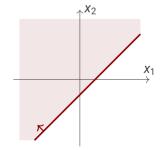
ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d o \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

Terminology

lacksquare output neuron i active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T\mathbf{x} + b_i \geq 0$



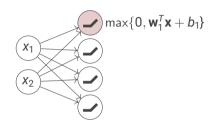


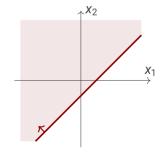
ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d o \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

- output neuron *i* active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$



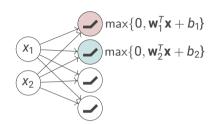


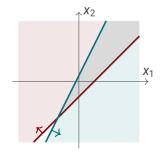
ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d \to \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

- output neuron *i* active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$



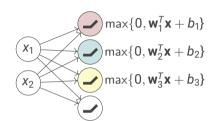


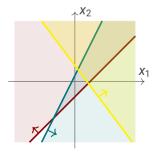
ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d \to \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

- output neuron *i* active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$



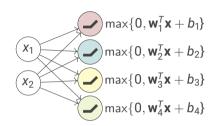


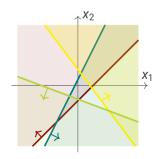
ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d o \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

- output neuron *i* active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$





ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

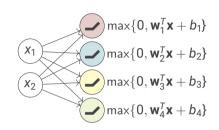
$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d \to \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

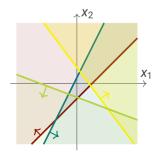
Terminology

- output neuron *i* active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$

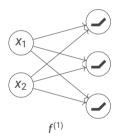
• they partition \mathbb{R}^d into polyhedral cells, corresponding to subsets of active neurons





■ A ReLU network is a concatenation of such ReLU layers:

■ A ReLU network is a concatenation of such ReLU layers:

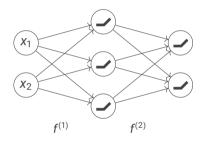


■ A ReLU network computes a continuous piecewise linear (CPWL) function:

$$f = f^{(\ell+1)} \circ f^{(\ell)} \circ \cdots \circ f^{(1)}$$

where $f^{(i)}$ is a ReLU layer for $i \in [\ell]$

■ A ReLU network is a concatenation of such ReLU layers:

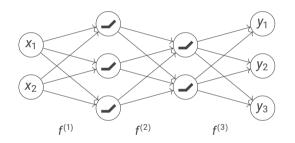


■ A ReLU network computes a continuous piecewise linear (CPWL) function:

$$f = f^{(\ell+1)} \circ f^{(\ell)} \circ \cdots \circ f^{(1)}$$

where $f^{(i)}$ is a ReLU layer for $i \in [\ell]$

■ A ReLU network is a concatenation of such ReLU layers:

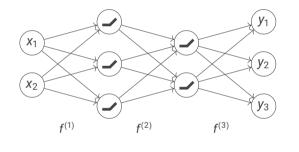


■ A ReLU network computes a continuous piecewise linear (CPWL) function:

$$f = f^{(\ell+1)} \circ f^{(\ell)} \circ \cdots \circ f^{(1)}$$

where $f^{(i)}$ is a ReLU layer for $i \in [\ell]$ and $f^{(\ell+1)}$ is the affine linear output layer.

■ A ReLU network is a concatenation of such ReLU layers:



Architecture

- 2 hidden layers
- depth 3
- width 3
- size 5

• A ReLU network computes a continuous piecewise linear (CPWL) function:

$$f = f^{(\ell+1)} \circ f^{(\ell)} \circ \cdots \circ f^{(1)}$$

where $f^{(i)}$ is a ReLU layer for $i \in [\ell]$ and $f^{(\ell+1)}$ is the affine linear output layer.

Machine learning:

■ A neural network is a parameterized function $f_{\theta} \colon \mathbb{R}^d \to \mathbb{R}^m$ with $\theta = (\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(\ell)}, \mathbf{b}^{(\ell)})$

Machine learning:

- A neural network is a parameterized function $f_{\theta} \colon \mathbb{R}^d \to \mathbb{R}^m$ with $\theta = (\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(\ell)}, \mathbf{b}^{(\ell)})$
- lacktriangle Model given data $\mathcal D$ with a neural network
 - 1. Choose an architecture (depth and width)
 - 2. Training = optimizing θ to fit f_{θ} to the data \mathcal{D}

Machine learning:

- A neural network is a parameterized function $f_{\theta} : \mathbb{R}^d \to \mathbb{R}^m$ with $\theta = (\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(\ell)}, \mathbf{b}^{(\ell)})$
- Model given data \mathcal{D} with a neural network
 - 1. Choose an architecture (depth and width)
 - 2. Training = optimizing θ to fit f_{θ} to the data \mathcal{D}

Questions:

1. Which functions are representable with a given architecture? \rightarrow Expressivity

Machine learning:

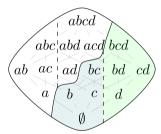
- A neural network is a parameterized function $f_{\theta} : \mathbb{R}^d \to \mathbb{R}^m$ with $\theta = (\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(\ell)}, \mathbf{b}^{(\ell)})$
- Model given data \mathcal{D} with a neural network
 - 1. Choose an architecture (depth and width)
 - 2. Training = optimizing θ to fit f_{θ} to the data \mathcal{D}

Questions:

- 1. Which functions are representable with a given architecture? \rightarrow Expressivity
- 2. Given θ , what can we say about the properties of f_{θ} ? \rightarrow Verification

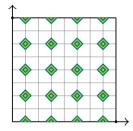
Expressivity

Representing CPWL functions



Based on *Depth-Bounds via the Braid Arrangement* with Christoph Hertrich and Georg Loho

Topological Expressivity



Based on *Topological Expressivity of ReLU Neural Networks* with Ekin Ergen

Theorem [Arora, Basu, Mianjy, Mukherjee, 2018]

Every CPWL function $f: \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_2(d+1) \rceil$ hidden layers.

Theorem [Arora, Basu, Mianjy, Mukherjee, 2018]

Every CPWL function $f: \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_2(d+1) \rceil$ hidden layers.

How many layers are necessary to represent all CPWL function?

Theorem [Arora, Basu, Mianjy, Mukherjee, 2018] Every CPWL function $f: \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_2(d+1) \rceil$ hidden layers.

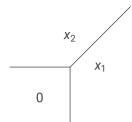
- How many layers are necessary to represent all CPWL function?
- There is no function that needs more layers to be represented than the function $\max\{0, x_1, \dots, x_d\}$ [Hertrich, Basu, Di Summa, and Skutella, 2021].

Theorem [Arora, Basu, Mianjy, Mukherjee, 2018] Every CPWL function $f: \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_2(d+1) \rceil$ hidden layers.

- How many layers are necessary to represent all CPWL function?
- There is no function that needs more layers to be represented than the function $\max\{0, x_1, \dots, x_d\}$ [Hertrich, Basu, Di Summa, and Skutella, 2021].
- $\max\{0, x_1, \dots, x_4\}$ can be represented with 2 hidden layers \rightarrow Upper bound improved to $\approx \log_3(d)$ hidden layers. [Bakaev, Brunck, Hertrich, Stade, Yehudayoff, 2025]

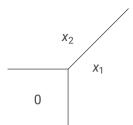
General lower bound

■ $\max\{0, x_1, x_2\}$ cannot be represented with one hidden layer [Basu, Mukherjee, 2017]



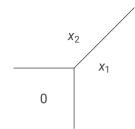
General lower bound

- $\max\{0, x_1, x_2\}$ cannot be represented with one hidden layer [Basu, Mukherjee, 2017]
- 2 is best known lower bound to compute all CPWL functions!



General lower bound

- max{0, x₁, x₂} cannot be represented with one hidden layer
 [Basu, Mukherjee, 2017]
- 2 is best known lower bound to compute all CPWL functions!



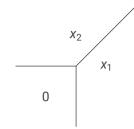
Restricting the weights

The function $\max\{0, x_1, \dots x_d\}$ needs

• $\lceil \log_2(d+1) \rceil$ many hidden layers to be represented with integer weights. [Haase, Hertrich, Loho, 23]

General lower bound

- max $\{0, x_1, x_2\}$ cannot be represented with one hidden layer [Basu, Mukherjee, 2017]
- 2 is best known lower bound to compute all CPWL functions!



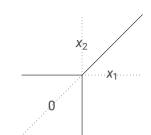
Restricting the weights

The function $\max\{0, x_1, \dots x_d\}$ needs

- $\lceil \log_2(d+1) \rceil$ many hidden layers to be represented with integer weights. [Haase, Hertrich, Loho, 23]
- $\lceil \log_p(d+1) \rceil$ many hidden layers to be represented with rational weights if all denominators are not divisible by p. [Averkov, Hojny, Merkert, 25]

General lower bound

- $\max\{0, x_1, x_2\}$ cannot be represented with one hidden layer [Basu, Mukherjee, 2017]
- 2 is best known lower bound to compute all CPWL functions!



Restricting the weights

The function $\max\{0, x_1, \dots x_d\}$ needs

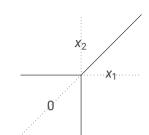
- $\lceil \log_2(d+1) \rceil$ many hidden layers to be represented with integer weights. [Haase, Hertrich, Loho, 23]
- $\lceil \log_p(d+1) \rceil$ many hidden layers to be represented with rational weights if all denominators are not divisible by p. [Averkov, Hojny, Merkert, 25]

Restricting the Breakpoints

■ Nice networks: All layers only have breakpoints where $x_i = x_j$

General lower bound

- $\max\{0, x_1, x_2\}$ cannot be represented with one hidden layer [Basu, Mukherjee, 2017]
- 2 is best known lower bound to compute all CPWL functions!



Restricting the weights

The function $\max\{0, x_1, \dots x_d\}$ needs

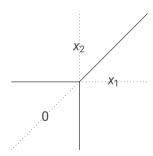
- $\lceil \log_2(d+1) \rceil$ many hidden layers to be represented with integer weights. [Haase, Hertrich, Loho, 23]
- $\lceil \log_p(d+1) \rceil$ many hidden layers to be represented with rational weights if all denominators are not divisible by p. [Averkov, Hojny, Merkert, 25]

Restricting the Breakpoints

- Nice networks: All layers only have breakpoints where $x_i = x_j$
- Computational proof: $\max\{0, x_1, \dots, x_4\}$ not representable with networks with 2 hidden layers [HBDS21].

Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_d\}$ with $\lceil \log_2 \log_2 (d+1) \rceil - 1$ hidden layers.

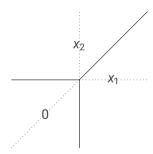


Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_d\}$ with $\lceil \log_2 \log_2 (d+1) \rceil - 1$ hidden layers.

Proof ingredients

• $V(\ell) = \text{Nice network functions with } \ell \text{ hidden layers}$



Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_d\}$ with $\lceil \log_2 \log_2 (d+1) \rceil - 1$ hidden layers.

Proof ingredients

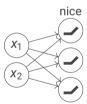
- $V(\ell) = \text{Nice network functions with } \ell \text{ hidden layers}$
- Goal: Show that $\max\{0, x_1, \dots, x_{2^{2^{\ell}}}\} \notin \mathcal{V}(\ell)$.

Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_d\}$ with $\lceil \log_2 \log_2 (d+1) \rceil - 1$ hidden layers.

Proof ingredients

- $V(\ell)$ = Nice network functions with ℓ hidden layers
- Goal: Show that $\max\{0, x_1, \dots, x_{2^{2^{\ell}}}\} \notin \mathcal{V}(\ell)$.
- $V(\ell + 1) = addlayer(V(\ell)) :=$ $span\{max\{0, f\} \mid f \in V(\ell), max\{0, f\} \text{ nice } \}.$

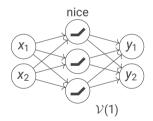


Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_d\}$ with $\lceil \log_2 \log_2 (d+1) \rceil - 1$ hidden layers.

Proof ingredients

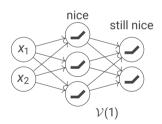
- $V(\ell)$ = Nice network functions with ℓ hidden layers
- Goal: Show that $\max\{0, x_1, \dots, x_{2^{2^{\ell}}}\} \notin \mathcal{V}(\ell)$.
- $V(\ell + 1) = addlayer(V(\ell)) :=$ span{max{0, f} | $f \in V(\ell)$, max{0, f} nice }.



Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_d\}$ with $\lceil \log_2 \log_2 (d+1) \rceil - 1$ hidden layers.

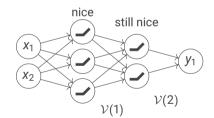
- $V(\ell)$ = Nice network functions with ℓ hidden layers
- Goal: Show that $\max\{0, x_1, \dots, x_{2^{2^{\ell}}}\} \notin \mathcal{V}(\ell)$.
- $V(\ell + 1) = addlayer(V(\ell)) :=$ $span\{max\{0, f\} \mid f \in V(\ell), max\{0, f\} \text{ nice } \}.$



Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_d\}$ with $\lceil \log_2 \log_2 (d+1) \rceil - 1$ hidden layers.

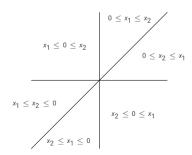
- $V(\ell)$ = Nice network functions with ℓ hidden layers
- Goal: Show that $\max\{0, x_1, \dots, x_{2^{2^{\ell}}}\} \notin \mathcal{V}(\ell)$.
- $V(\ell + 1) = addlayer(V(\ell)) :=$ span{max{0, f} | $f \in V(\ell)$, max{0, f} nice }.



Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_d\}$ with $\lceil \log_2 \log_2 (d+1) \rceil - 1$ hidden layers.

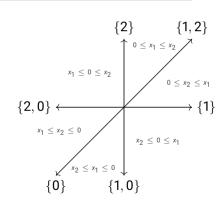
- $V(\ell)$ = Nice network functions with ℓ hidden layers
- Goal: Show that $\max\{0, x_1, \dots, x_{2^{2^{\ell}}}\} \notin \mathcal{V}(\ell)$.
- $V(\ell + 1) = addlayer(V(\ell)) :=$ $span\{max\{0, f\} \mid f \in V(\ell), max\{0, f\} \text{ nice } \}.$
- Nice networks compatible with braid fan



Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_d\}$ with $\lceil \log_2 \log_2 (d+1) \rceil - 1$ hidden layers.

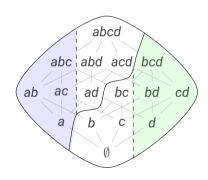
- $V(\ell)$ = Nice network functions with ℓ hidden layers
- Goal: Show that $\max\{0, x_1, \dots, x_{2^{2^{\ell}}}\} \notin \mathcal{V}(\ell)$.
- $V(\ell+1) = addlayer(V(\ell)) :=$ $span\{max\{0,f\} \mid f \in V(\ell), max\{0,f\} \text{ nice } \}.$
- Nice networks compatible with braid fan
- Nice networks \simeq set functions \mathcal{F} .



Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_d\}$ with $\lceil \log_2 \log_2 (d+1) \rceil - 1$ hidden layers.

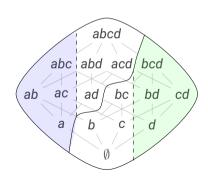
- $V(\ell)$ = Nice network functions with ℓ hidden layers
- Goal: Show that $\max\{0, x_1, \dots, x_{2^{2^{\ell}}}\} \notin \mathcal{V}(\ell)$.
- $V(\ell+1) = addlayer(V(\ell)) :=$ $span\{max\{0,f\} \mid f \in V(\ell), max\{0,f\} \text{ nice }\}.$
- Nice networks compatible with braid fan
- Nice networks \simeq set functions \mathcal{F} .
- Nested sequence of vector subspaces $\mathcal{V}(0) = \mathcal{F}(1) \subsetneq \cdots \subsetneq \mathcal{F}(2^{2^\ell} + 1) = \mathcal{F}$ via lattices



Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_d\}$ with $\lceil \log_2 \log_2 (d+1) \rceil - 1$ hidden layers.

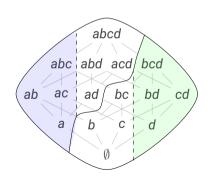
- $V(\ell)$ = Nice network functions with ℓ hidden layers
- Goal: Show that $\max\{0, x_1, \dots, x_{2^{2^{\ell}}}\} \notin \mathcal{V}(\ell)$.
- $V(\ell+1) = addlayer(V(\ell)) :=$ $span\{max\{0,f\} \mid f \in V(\ell), max\{0,f\} \text{ nice }\}.$
- Nice networks compatible with braid fan
- Nice networks \simeq set functions \mathcal{F} .
- Nested sequence of vector subspaces $\mathcal{V}(0) = \mathcal{F}(1) \subsetneq \cdots \subsetneq \mathcal{F}(2^{2^\ell} + 1) = \mathcal{F}$ via lattices
- Key technical lemma: $addlayer(\mathcal{F}(k)) \subseteq \mathcal{F}(k^2 + k)$.



Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_d\}$ with $\lceil \log_2 \log_2 (d+1) \rceil - 1$ hidden layers.

- $V(\ell)$ = Nice network functions with ℓ hidden layers
- Goal: Show that $\max\{0, x_1, \dots, x_{2^{2^{\ell}}}\} \notin \mathcal{V}(\ell)$.
- $V(\ell+1) = addlayer(V(\ell)) :=$ $span\{max\{0,f\} \mid f \in V(\ell), max\{0,f\} \text{ nice }\}.$
- Nice networks compatible with braid fan
- Nice networks \simeq set functions \mathcal{F} .
- Nested sequence of vector subspaces $\mathcal{V}(0) = \mathcal{F}(1) \subsetneq \cdots \subsetneq \mathcal{F}(2^{2^\ell} + 1) = \mathcal{F}$ via lattices
- Key technical lemma: $addlayer(\mathcal{F}(k)) \subseteq \mathcal{F}(k^2 + k)$.
- Iterating this yields $\mathcal{V}(\ell) \subseteq \mathcal{F}(2^{2^{\ell}}) \subseteq \mathcal{F}$



It Remains Open...

Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_4\}$ with 2 hidden layers

It Remains Open...

Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_4\}$ with 2 hidden layers

But:

 $\text{max}\{0,x_1,\dots,x_4\}$ can be computed with 2 hidden layers [BBHSY25]

 \rightarrow Restricting to nice networks is a real restriction.

It Remains Open...

Theorem [G., Hertrich, Loho, 25]

Nice networks cannot compute $\max\{0, x_1, \dots, x_4\}$ with 2 hidden layers

But:

 $\max\{0, x_1, \dots, x_4\}$ can be computed with 2 hidden layers [BBHSY25] \rightarrow Restricting to nice networks is a real restriction.

Open Questions:

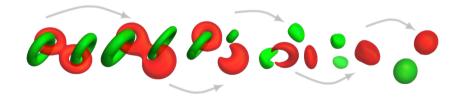
- How many layers are necessary to compute all CPWL functions?
- Is there a function that needs more than 2 hidden layers?

■ Given $\{(\mathbf{x}_i, y_i)\}_{i \in I}$ with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$

- Given $\{(\mathbf{x}_i, y_i)\}_{i \in I}$ with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$
- f classifies data if $f(\mathbf{x}_i) \leq 0 \iff y_i = -1$

- Given $\{(\mathbf{x}_i, y_i)\}_{i \in I}$ with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$
- f classifies data if $f(\mathbf{x}_i) \leq 0 \iff y_i = -1$
- Topological data analysis: Data can have nontrivial topology

- Given $\{(\mathbf{x}_i, y_i)\}_{i \in I}$ with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$
- f classifies data if $f(\mathbf{x}_i) \leq 0 \iff y_i = -1$
- Topological data analysis: Data can have nontrivial topology
- Empirical insights [Naitzat et al., 2020]:
 Neural networks operate by changing topology, transforming a topologically complicated data set into a topologically simple one as it passes through the layers



- Given $\{(\mathbf{x}_i, y_i)\}_{i \in I}$ with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$
- f classifies data if $f(\mathbf{x}_i) \leq 0 \iff y_i = -1$
- Topological data analysis: Data can have nontrivial topology
- Empirical insights [Naitzat et al., 2020]:
 Neural networks operate by changing topology, transforming a topologically complicated data set into a topologically simple one as it passes through the layers



Question:

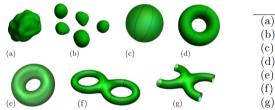
Given an architecture, how topologically complex can the decision regions $f^{-1}((-\infty, 0])$ become?

How to Quantify the Topological Complexity?

■ Use Betti numbers as complexity measure for topological space M

How to Quantify the Topological Complexity?

- Use Betti numbers as complexity measure for topological space M
- Intuitively: the k-th Betti number $\beta_k(M)$ is the number of (k+1)-dimensional holes in M and $\beta_0(M)$ is the number of connected components.



	Manifold $M \subseteq \mathbb{R}^3$	eta(M)
(a)	Single contractible manifold	(1,0,0)
(b)	Five contractible manifolds	(5, 0, 0)
(c)	Sphere	(1, 0, 1)
(d)	Solid torus (filled)	(1, 1, 0)
(e)	Surface of torus (hollow)	(1, 2, 1)
(f)	Genus two surface (hollow)	(1, 4, 1)
(g)	Torso surface (hollow)	(1, 3, 0)

Figure 2. Naitzat et al.

How to Quantify the Topological Complexity?

- Use Betti numbers as complexity measure for topological space M
- Intuitively: the k-th Betti number $\beta_k(M)$ is the number of (k+1)-dimensional holes in M and $\beta_0(M)$ is the number of connected components.

					Manifold $M \subseteq \mathbb{R}^3$	eta(M)
				$\overline{\rm (a)}$	Single contractible manifold	(1,0,0)
				(b)	Five contractible manifolds	(5, 0, 0)
(a)	(b)	(c)	(d)	(c)	Sphere	(1, 0, 1)
(a)	(6)	(0)	(d)	(d)	Solid torus (filled)	(1, 1, 0)
				(e)	Surface of torus (hollow)	(1, 2, 1)
				(f)	Genus two surface (hollow)	(1, 4, 1)
(e)	(f)		(g)	(g)	Torso surface (hollow)	(1, 3, 0)

Figure 2. Naitzat et al.

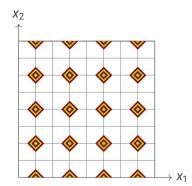
■ Topological expressivity of neural network f measured by $\beta_k(f^{-1}((-\infty,0]))$

Topological Expressivity

Theorem[Ergen, G., 24]

For any depth and width, there is a neural network f such that for all $k = 0, \dots, d-1$ holds

$$\beta_k(f^{-1}((-\infty,0]) \ge \frac{width}{d}^{(depth-2)\times k}$$

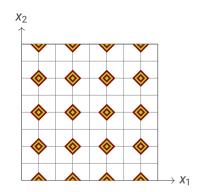


Topological Expressivity

Theorem[Ergen, G., 24]

For any depth and width, there is a neural network f such that for all $k=0,\ldots,d-1$ holds

$$\beta_k(f^{-1}((-\infty,0]) \ge \frac{width}{d}^{(depth-2)\times k}$$



Theorem[Ergen, G., 24]

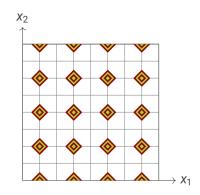
It holds that $\beta_k(f^{-1}((-\infty, 0]) \le width^{depth \times d^2}$ for all $k = 0, \dots, d-1$.

Topological Expressivity

Theorem[Ergen, G., 24]

For any depth and width, there is a neural network f such that for all $k = 0, \dots, d-1$ holds

$$\beta_k(f^{-1}((-\infty,0]) \ge \frac{width}{d}^{(depth-2)\times k}$$



Theorem[Ergen, G., 24]

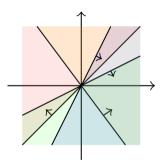
It holds that $\beta_k(f^{-1}((-\infty,0]) \leq width^{depth \times d^2}$ for all $k=0,\ldots,d-1$.

Conclusion

Deep neural networks are better equipped to model topological complex data sets.

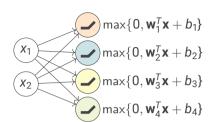
Verification

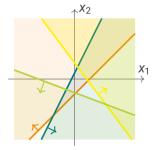
Complexity of Injectivity and Verification



Based on Complexity of Injectivity and Verification of ReLU Neural Networks with Vincent Froese and Martin Skutella

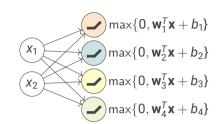
RELU-LAYER INJECTIVITY Given: matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, vector $\mathbf{b} \in \mathbb{R}^m$ Question: is the map $\phi_{\mathbf{W},\mathbf{b}}$ injective?

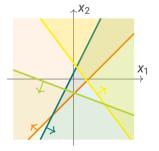




RELU-LAYER INJECTIVITY Given: matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, vector $\mathbf{b} \in \mathbb{R}^m$ Question: is the map $\phi_{\mathbf{W},\mathbf{b}}$ injective?

Theorem [Puthawala et al., 2022] $\phi_{\mathbf{W},\mathbf{b}}$ injective \iff for every cell, active neurons (rows of \mathbf{W}) have rank d





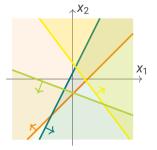
RELU-LAYER INJECTIVITY Given: matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, vector $\mathbf{b} \in \mathbb{R}^m$ Question: is the map $\phi_{\mathbf{W}|\mathbf{b}}$ injective?

Theorem [Puthawala et al., 2022] $\phi_{\mathbf{W},\mathbf{b}}$ injective \iff for every cell, active neurons (rows of \mathbf{W}) have rank d

Computational Complexity

• number of cells in $O(m^d)$ [Zaslavsky, 1975]



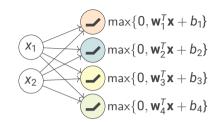


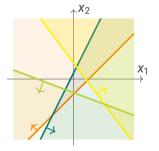
RELU-LAYER INJECTIVITY Given: matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, vector $\mathbf{b} \in \mathbb{R}^m$ Question: is the map $\phi_{\mathbf{W},\mathbf{b}}$ injective?

Theorem [Puthawala et al., 2022] $\phi_{\mathbf{W},\mathbf{b}}$ injective \iff for every cell, active neurons (rows of \mathbf{W}) have rank d

Computational Complexity

- number of cells in O(m^d) [Zaslavsky, 1975]
- algorithm with runtime $O(\text{poly}(m)m^d)$





Theorem [Froese, G., Skutella]

ReLU-Layer Injectivity is coNP -complete.

Theorem [Froese, G., Skutella]

ReLU-Layer Injectivity is coNP -complete.

Proof

Reduction from complement of:

ACYCLIC-2-DISCONNECTION

Input:A digraph D = (V, A). Question: Is there a subset $A' \subseteq A$ of arcs such that (V, A') is acyclic and $(V, A \setminus A')$ is not weakly connected?

Theorem [Froese, G., Skutella]

ReLU-Layer Injectivity is coNP-complete.

Proof

Reduction from complement of:

ACYCLIC-2-DISCONNECTION

Input:A digraph D = (V, A). Question: Is there a subset $A' \subseteq A$ of arcs such that (V, A') is acyclic and $(V, A \setminus A')$ is not weakly connected?

Theorem [Froese, G., Skutella]

ReLU-Layer Injectivity is coNP -complete.

Proof

Reduction from complement of:

ACYCLIC-2-DISCONNECTION

Input:A digraph D = (V, A). Question: Is there a subset $A' \subseteq A$ of arcs such that (V, A') is acyclic and $(V, A \setminus A')$ is not weakly connected?

Theorem [Froese, G., Skutella]

ReLU-Layer Injectivity is coNP -complete.

Proof

Reduction from complement of:

ACYCLIC-2-DISCONNECTION Input:A digraph D=(V,A). Question: Is there a subset $A'\subseteq A$ of arcs such that (V,A') is acyclic and $(V,A\setminus A')$ is not weakly connected?

Theorem [Froese, G., Skutella]

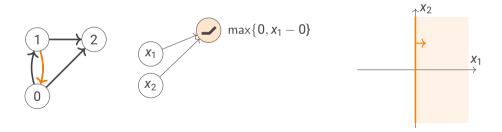
ACYCLIC-2-DISCONNECTION is NP-complete.

■ Given a digraph D = (V, A) with $V = \{0, ..., d\}$ and m = |A|, we construct the following ReLU-layer $\phi \colon \mathbb{R}^d \to \mathbb{R}^m$ by

$$\phi(\mathbf{x}) = (\max\{0, x_i - x_j\})_{(i,j) \in A},$$

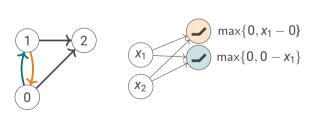
■ Given a digraph D = (V, A) with $V = \{0, ..., d\}$ and m = |A|, we construct the following ReLU-layer $\phi \colon \mathbb{R}^d \to \mathbb{R}^m$ by

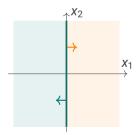
$$\phi(\mathbf{x}) = (\max\{0, x_i - x_j\})_{(i,j) \in A},$$



■ Given a digraph D = (V, A) with $V = \{0, ..., d\}$ and m = |A|, we construct the following ReLU-layer $\phi \colon \mathbb{R}^d \to \mathbb{R}^m$ by

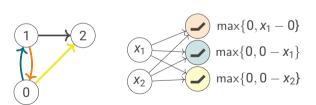
$$\phi(\mathbf{x}) = (\max\{0, x_i - x_j\})_{(i,j) \in A},$$

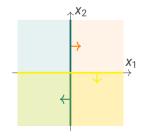




■ Given a digraph D = (V, A) with $V = \{0, ..., d\}$ and m = |A|, we construct the following ReLU-layer $\phi \colon \mathbb{R}^d \to \mathbb{R}^m$ by

$$\phi(\mathbf{x}) = (\max\{0, x_i - x_j\})_{(i,j) \in A},$$



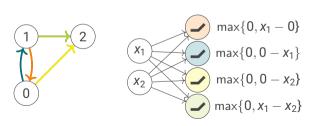


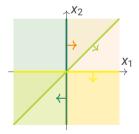
ReLU Layer from Digraph

■ Given a digraph D = (V, A) with $V = \{0, ..., d\}$ and m = |A|, we construct the following ReLU-layer $\phi \colon \mathbb{R}^d \to \mathbb{R}^m$ by

$$\phi(\mathbf{x}) = (\max\{0, x_i - x_j\})_{(i,j) \in A},$$

where $x_0 := 0$.



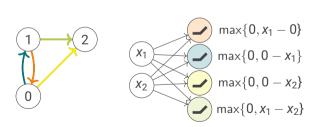


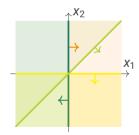
ReLU Layer from Digraph

■ Given a digraph D = (V, A) with $V = \{0, ..., d\}$ and m = |A|, we construct the following ReLU-layer $\phi \colon \mathbb{R}^d \to \mathbb{R}^m$ by

$$\phi(\mathbf{x}) = (\max\{0, x_i - x_i\})_{(i,j) \in A},$$

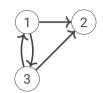
where $x_0 := 0$.

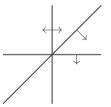




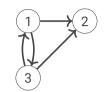
■ All hyperplanes are of the form $\{x_i = x_i\}$ for $i, j \in [d]_0$

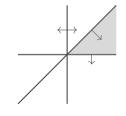
■ For all permutation π : $[d]_0 \to [d]_0$ it holds that ϕ is linear on $C_\pi = \{x_{\pi^{-1}(0)} \leq \ldots \leq x_{\pi^{-1}(d)}\}$



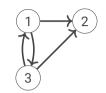


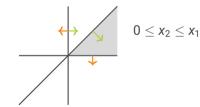
- For all permutation π : $[d]_0 \to [d]_0$ it holds that ϕ is linear on $C_\pi = \{x_{\pi^{-1}(0)} \le \ldots \le x_{\pi^{-1}(d)}\}$
- $\ \ \, = \phi$ is injective if and only if $\mathbf{W}_{\mathsf{C}_\pi}$ has full rank for all $\pi.$



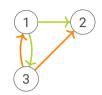


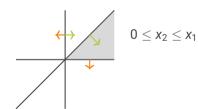
- For all permutation π : $[d]_0 \to [d]_0$ it holds that ϕ is linear on $C_\pi = \{x_{\pi^{-1}(0)} \le \ldots \le x_{\pi^{-1}(d)}\}$
- ullet ϕ is injective if and only if $\mathbf{W}_{G_{\pi}}$ has full rank for all π .
- A neuron $\max\{0, x_i x_j\}$ corresponding to the arc (i,j) is active on C_{π} if and only if $x_i \ge x_j$ if and only if $\pi(i) > \pi(j)$



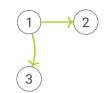


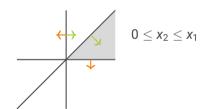
- For all permutation π : $[d]_0 \to [d]_0$ it holds that ϕ is linear on $C_\pi = \{x_{\pi^{-1}(0)} \le \ldots \le x_{\pi^{-1}(d)}\}$
- ϕ is injective if and only if $\mathbf{W}_{C_{\pi}}$ has full rank for all π .
- A neuron $\max\{0, x_i x_j\}$ corresponding to the arc (i, j) is active on C_{π} if and only if $x_i \ge x_i$ if and only if $\pi(i) > \pi(j)$
- Let $A_{\pi} = \{(i,j) \in A \mid \pi(i) < \pi(j)\} \subseteq A$ be the (acyclic) set of arcs corresponding to the inactive neurons on C_{π} and $A \setminus A_{\pi}$ the set of arcs corresponding to the active neurons on C_{π}



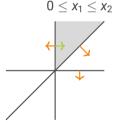


- For all permutation π : $[d]_0 \to [d]_0$ it holds that ϕ is linear on $C_\pi = \{x_{\pi^{-1}(0)} \le \ldots \le x_{\pi^{-1}(d)}\}$
- ϕ is injective if and only if $\mathbf{W}_{C_{-}}$ has full rank for all π .
- A neuron $\max\{0, x_i x_j\}$ corresponding to the arc (i, j) is active on C_{π} if and only if $x_i \ge x_i$ if and only if $\pi(i) > \pi(j)$
- Let $A_{\pi} = \{(i,j) \in A \mid \pi(i) < \pi(j)\} \subseteq A$ be the (acyclic) set of arcs corresponding to the inactive neurons on C_{π} and $A \setminus A_{\pi}$ the set of arcs corresponding to the active neurons on C_{π}

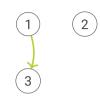


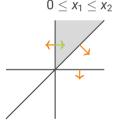


- For all permutation π : $[d]_0 \rightarrow [d]_0$ it holds that ϕ is linear on $C_{\pi} = \{x_{\pi^{-1}(0)} \leq \ldots \leq x_{\pi^{-1}(d)}\}$
- ϕ is injective if and only if \mathbf{W}_{C_-} has full rank for all π .
- A neuron $\max\{0, x_i x_j\}$ corresponding to the arc (i, j) is active on C_{π} if and only if $x_i \ge x_j$ if and only if $\pi(i) > \pi(j)$
- Let $A_{\pi} = \{(i,j) \in A \mid \pi(i) < \pi(j)\} \subseteq A$ be the (acyclic) set of arcs corresponding to the inactive neurons on C_{π} and $A \setminus A_{\pi}$ the set of arcs corresponding to the active neurons on C_{π}

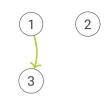


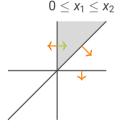
- For all permutation π : $[d]_0 \to [d]_0$ it holds that ϕ is linear on $C_{\pi} = \{x_{\pi^{-1}(0)} \leq \ldots \leq x_{\pi^{-1}(d)}\}$
- ϕ is injective if and only if $\mathbf{W}_{G_{\pi}}$ has full rank for all π .
- A neuron $\max\{0, x_i x_j\}$ corresponding to the arc (i, j) is active on C_{π} if and only if $x_i \ge x_j$ if and only if $\pi(i) > \pi(j)$
- Let $A_{\pi} = \{(i,j) \in A \mid \pi(i) < \pi(j)\} \subseteq A$ be the (acyclic) set of arcs corresponding to the inactive neurons on C_{π} and $A \setminus A_{\pi}$ the set of arcs corresponding to the active neurons on C_{π}



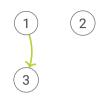


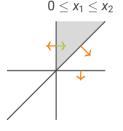
- For all permutation π : $[d]_0 \to [d]_0$ it holds that ϕ is linear on $C_\pi = \{x_{\pi^{-1}(0)} \le \ldots \le x_{\pi^{-1}(d)}\}$
- ϕ is injective if and only if $\mathbf{W}_{C_{\pi}}$ has full rank for all π .
- A neuron $\max\{0, x_i x_j\}$ corresponding to the arc (i, j) is active on C_{π} if and only if $x_i \ge x_j$ if and only if $\pi(i) > \pi(j)$
- Let $A_{\pi} = \{(i,j) \in A \mid \pi(i) < \pi(j)\} \subseteq A$ be the (acyclic) set of arcs corresponding to the inactive neurons on C_{π} and $A \setminus A_{\pi}$ the set of arcs corresponding to the active neurons on C_{π}
- $\mathbf{W}_{C_{\pi}}$ has full rank $\iff D_{\pi} = (V, A \setminus A_{\pi})$ is weakly connected.





- For all permutation π : $[d]_0 \to [d]_0$ it holds that ϕ is linear on $C_\pi = \{x_{\pi^{-1}(0)} \le \ldots \le x_{\pi^{-1}(d)}\}$
- ϕ is injective if and only if $\mathbf{W}_{C_{\pi}}$ has full rank for all π .
- A neuron $\max\{0, x_i x_j\}$ corresponding to the arc (i, j) is active on C_{π} if and only if $x_i \ge x_j$ if and only if $\pi(i) > \pi(j)$
- Let $A_{\pi} = \{(i,j) \in A \mid \pi(i) < \pi(j)\} \subseteq A$ be the (acyclic) set of arcs corresponding to the inactive neurons on C_{π} and $A \setminus A_{\pi}$ the set of arcs corresponding to the active neurons on C_{π}
- $\mathbf{W}_{C_{\pi}}$ has full rank $\iff D_{\pi} = (V, A \setminus A_{\pi})$ is weakly connected.
- ϕ is not injective \iff there is an acyclic-2-disconnection.





FPT-Algorithm

Can we do better than $O(m^d)$?

FPT-Algorithm

Can we do better than $O(m^d)$?

Theorem [Froese, G., Skutella. 2024]

ReLU-Layer Injectivity can be solved in $O(\text{poly}(m)(d+1)^d)$ time (i.e., FPT for dimension d).

Theorem [Froese, G., Skutella. 2024]

For a one hidden layer neural network, it is NP-complete to decide if the function attains a positive output value

Theorem [Froese, G., Skutella. 2024]

For a one hidden layer neural network, it is NP-complete to decide if the function attains a positive output value

Proof: Similar reduction from cut problem in weighted graph.

Theorem [Froese, G., Skutella. 2024]

For a one hidden layer neural network, it is NP-complete to decide if the function attains a positive output value

Proof: Similar reduction from cut problem in weighted graph.

Corollaries [Froese, G., Skutella. 2024]

For a one hidden layer neural network

- it is NP-complete to decide if the function is surjective.
- there is no polynomial time algorithm that approximates the maximum function value on the unit ball unless P=NP.

Theorem [Froese, G., Skutella. 2024]

For a one hidden layer neural network, it is NP-complete to decide if the function attains a positive output value

Proof: Similar reduction from cut problem in weighted graph.

Corollaries [Froese, G., Skutella. 2024]

For a one hidden layer neural network

- it is NP-complete to decide if the function is surjective.
- there is no polynomial time algorithm that approximates the maximum function value on the unit ball unless P=NP.

Open Question: Do the hardness results also hold for trained neural networks?

Theorem [Froese, G., Skutella. 2024]

For a one hidden layer neural network, it is NP-complete to decide if the function attains a positive output value

Proof: Similar reduction from cut problem in weighted graph.

Corollaries [Froese, G., Skutella. 2024]

For a one hidden layer neural network

- it is NP-complete to decide if the function is surjective.
- there is no polynomial time algorithm that approximates the maximum function value on the unit ball unless P=NP.

Open Question: Do the hardness results also hold for trained neural networks?

Thank You!