Combinatorial and Implicit Approaches to Deep Learning

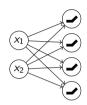
Moritz Grillo

Yulia Alexandr, Vincent Froese, Christoph Hertrich, Georg Loho Guido Montúfar, Martin Skutella and Moritz Stargalla

SPP Annual Meeting Theoretical Foundations of Deep Learning

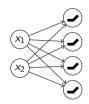
November 5, 2025

ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$



ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

 $f_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d o \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$

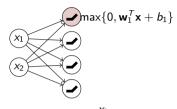


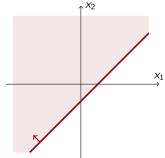
ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$f_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d o \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

Geometry

lacktriangle output neuron i active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$



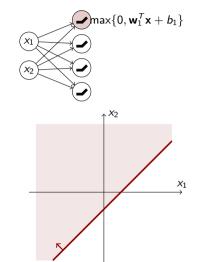


ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$f_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d o \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

- ▶ output neuron *i* active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$

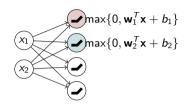


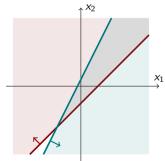
ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$f_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d o \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

- ightharpoonup output neuron i active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$



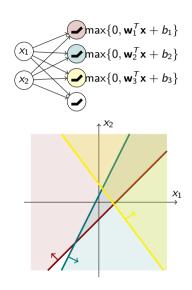


ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$f_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d o \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

- ightharpoonup output neuron i active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$

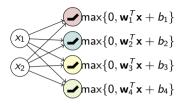


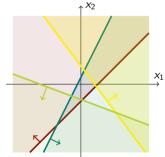
ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$f_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d o \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

- ightharpoonup output neuron i active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$





ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

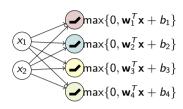
$$f_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d o \mathbb{R}^m, \quad \mathbf{x} \mapsto \max\{\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b}\}$$

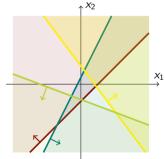
Geometry

- ▶ output neuron *i* active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} := \{\mathbf{w}_i^T \mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$

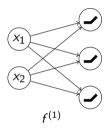
▶ they partition \mathbb{R}^d into polyhedral cells, corresponding to subsets of active neurons





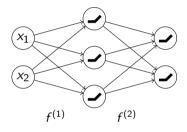
▶ A ReLU network is a concatenation of such ReLU layers:

► A ReLU network is a concatenation of such ReLU layers:



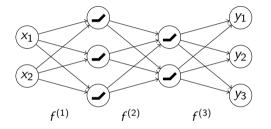
▶ A ReLU network computes a continuous piecewise linear (CPWL) function: $f = f^{(\ell+1)} \circ f^{(\ell)} \circ \cdots \circ f^{(1)}$ where $f^{(i)}$ is a ReLU layer for $i \in [\ell]$

► A ReLU network is a concatenation of such ReLU layers:



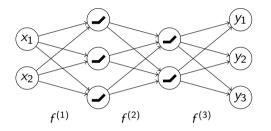
▶ A ReLU network computes a continuous piecewise linear (CPWL) function: $f = f^{(\ell+1)} \circ f^{(\ell)} \circ \cdots \circ f^{(1)}$ where $f^{(i)}$ is a ReLU layer for $i \in [\ell]$

▶ A ReLU network is a concatenation of such ReLU layers:



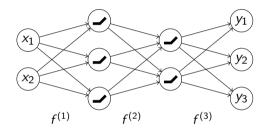
A ReLU network computes a continuous piecewise linear (CPWL) function: $f = f^{(\ell+1)} \circ f^{(\ell)} \circ \cdots \circ f^{(1)}$ where $f^{(i)}$ is a ReLU layer for $i \in [\ell]$ and $f^{(\ell+1)}$ is the affine linear output layer.

▶ A ReLU network is a concatenation of such ReLU layers:



- A ReLU network computes a continuous piecewise linear (CPWL) function: $f = f^{(\ell+1)} \circ f^{(\ell)} \circ \cdots \circ f^{(1)}$ where $f^{(i)}$ is a ReLU layer for $i \in [\ell]$ and $f^{(\ell+1)}$ is the affine linear output layer.
- ► Still subdivides input space into activation regions where *f* is affine linear

► A ReLU network is a concatenation of such ReLU layers:



Architecture

- \rightarrow A = (2, 3, 2, 3)
- 2 hidden layers

- A ReLU network computes a continuous piecewise linear (CPWL) function: $f = f^{(\ell+1)} \circ f^{(\ell)} \circ \cdots \circ f^{(1)}$ where $f^{(i)}$ is a ReLU layer for $i \in [\ell]$ and $f^{(\ell+1)}$ is the affine linear output layer.
- Still subdivides input space into activation regions where f is affine linear

A neural network is a parameterized function $f_{\theta} \colon \mathbb{R}^d \to \mathbb{R}^m$ with $\theta = (\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(\ell)}, \mathbf{b}^{(\ell)})$

- A neural network is a parameterized function $f_{\theta} : \mathbb{R}^d \to \mathbb{R}^m$ with $\theta = (\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(\ell)}, \mathbf{b}^{(\ell)})$
- ▶ For a given architecture A we have μ_A : $\Theta_A \to \mathcal{F}_A$ given by $\theta \mapsto f_\theta$

- A neural network is a parameterized function $f_{\theta} : \mathbb{R}^d \to \mathbb{R}^m$ with $\theta = (\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(\ell)}, \mathbf{b}^{(\ell)})$
- ▶ For a given architecture A we have μ_A : $\Theta_A \to \mathcal{F}_A$ given by $\theta \mapsto f_\theta$

Questions:

1. Given θ , what can we say about the properties of f_{θ} ?

- A neural network is a parameterized function $f_{\theta} : \mathbb{R}^d \to \mathbb{R}^m$ with $\theta = (\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(\ell)}, \mathbf{b}^{(\ell)})$
- ▶ For a given architecture A we have μ_A : $\Theta_A \to \mathcal{F}_A$ given by $\theta \mapsto f_\theta$

- 1. Given θ , what can we say about the properties of f_{θ} ?
- 2. What is $\mathcal{F}_{\mathcal{A}}$?

- A neural network is a parameterized function $f_{\theta} : \mathbb{R}^d \to \mathbb{R}^m$ with $\theta = (\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(\ell)}, \mathbf{b}^{(\ell)})$
- ▶ For a given architecture A we have μ_A : $\Theta_A \to \mathcal{F}_A$ given by $\theta \mapsto f_\theta$

- 1. Given θ , what can we say about the properties of f_{θ} ?
- 2. What is $\mathcal{F}_{\mathcal{A}}$?
- 3. Given data set $X \subseteq \mathbb{R}^d$, what can we say about $\theta \mapsto f_{\theta}(X)$?

- A neural network is a parameterized function $f_{\theta} : \mathbb{R}^d \to \mathbb{R}^m$ with $\theta = (\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(\ell)}, \mathbf{b}^{(\ell)})$
- ▶ For a given architecture A we have μ_A : $\Theta_A \to \mathcal{F}_A$ given by $\theta \mapsto f_\theta$

- 1. Given θ , what can we say about the properties of f_{θ} ?
- 2. What is $\mathcal{F}_{\mathcal{A}}$?
- 3. Given data set $X \subseteq \mathbb{R}^d$, what can we say about $\theta \mapsto f_{\theta}(X)$?
- 4. Given f, what can we say about the fiber $\mu_{\mathcal{A}}^{-1}(f) \subseteq \Theta_{\mathcal{A}}$?

Questions:

What is the the maximum function value $\max_{x \in B} f_{\theta}(x)$ on a set $B \subseteq \mathbb{R}^d$?

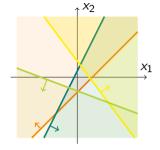
- What is the the maximum function value $\max_{x \in B} f_{\theta}(x)$ on a set $B \subseteq \mathbb{R}^d$?
- ▶ Does f_{θ} attain a positive output value?

- What is the the maximum function value $\max_{x \in B} f_{\theta}(x)$ on a set $B \subseteq \mathbb{R}^d$?
- **Does** f_{θ} attain a positive output value?
- ▶ What is the Lipschitz constant of f_{θ} ?

Questions:

- What is the the maximum function value $\max_{x \in B} f_{\theta}(x)$ on a set $B \subseteq \mathbb{R}^d$?
- **Does** f_{θ} attain a positive output value?
- ▶ What is the Lipschitz constant of f_{θ} ?

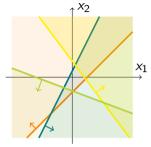
How to solve them naively?



Questions:

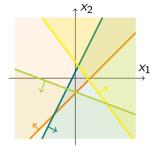
- What is the the maximum function value $\max_{x \in B} f_{\theta}(x)$ on a set $B \subseteq \mathbb{R}^d$?
- **Does** f_{θ} attain a positive output value?
- ▶ What is the Lipschitz constant of f_{θ} ?

▶ Solve problems on every linear region with e.g. linear programming



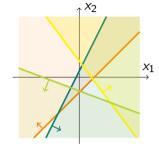
- What is the the maximum function value $\max_{x \in B} f_{\theta}(x)$ on a set $B \subseteq \mathbb{R}^d$?
- **Does** f_{θ} attain a positive output value?
- ▶ What is the Lipschitz constant of f_{θ} ?

- Solve problems on every linear region with e.g. linear programming
- ▶ **But**: For network with ℓ hidden layers and width n, there can be $O(n^{\ell d})$ many linear regions \to Already intractable for one hidden layer in high dimension....



Questions:

- What is the the maximum function value $\max_{x \in B} f_{\theta}(x)$ on a set $B \subseteq \mathbb{R}^d$?
- **Does** f_{θ} attain a positive output value?
- ▶ What is the Lipschitz constant of f_{θ} ?



How to solve them naively?

- Solve problems on every linear region with e.g. linear programming
- ▶ **But**: For network with ℓ hidden layers and width n, there can be $O(n^{\ell d})$ many linear regions \to Already intractable for one hidden layer in high dimension....

Can we do something better?

Asymptotically (most likely) not :(

Theorem[Froese, G., Hertrich, Skutella, Stargalla, 2025] The following problems are NP-hard and **not** solvable in $n^{o(d)}$ time, assuming ETH:

For one hidden layer:

- ightharpoonup Deciding if f_{θ} attains a positive value
- ▶ Computing $\max_{x \in B} f_{\theta}(x)$ for any open set B
- Computing the Lipschitz constant
- **Deciding** if f_{θ} is surjective or injective

Asymptotically (most likely) not :(

Theorem[Froese, G., Hertrich, Skutella, Stargalla, 2025] The following problems are NP-hard and **not** solvable in $n^{o(d)}$ time, assuming ETH:

For one hidden layer:

- ightharpoonup Deciding if f_{θ} attains a positive value
- ▶ Computing $\max_{x \in B} f_{\theta}(x)$ for any open set B
- Computing the Lipschitz constant
- ▶ Deciding if f_{θ} is surjective or injective

For two hidden layers:

- **Deciding** if f_{θ} is the zero map.
- ► Approximating $\max_{x \in B} f_{\theta}(x)$
- Approximating the Lipschitz constant

Asymptotically (most likely) not :(

Theorem[Froese, G., Hertrich, Skutella, Stargalla, 2025] The following problems are NP-hard and **not** solvable in $n^{o(d)}$ time, assuming ETH:

For one hidden layer:

- ightharpoonup Deciding if f_{θ} attains a positive value
- ▶ Computing $\max_{x \in B} f_{\theta}(x)$ for any open set B
- Computing the Lipschitz constant
- ▶ Deciding if f_{θ} is surjective or injective

For two hidden layers:

- **Deciding** if f_{θ} is the zero map.
- ► Approximating $\max_{x \in B} f_{\theta}(x)$
- Approximating the Lipschitz constant

Open Question:

What about average runtime?

▶ Every CPWL function $f: \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_2(d+1) \rceil$ hidden layers [Arora et al, 2018]

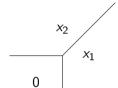
▶ Every CPWL function $f: \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_3(d) \rceil$ hidden layers [Arora et al, 2018], [Bakaev et al, 2025]

- ▶ Every CPWL function $f: \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_3(d) \rceil$ hidden layers [Arora et al, 2018], [Bakaev et al, 2025]
- ► How many layers are necessary?

- ▶ Every CPWL function $f: \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_3(d) \rceil$ hidden layers [Arora et al, 2018], [Bakaev et al, 2025]
- ► How many layers are necessary?
- There is no function that needs more layers than $\max\{0, x_1, \dots, x_d\}$ [Hertrich et al, 2021].



- ▶ Every CPWL function $f: \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_3(d) \rceil$ hidden layers [Arora et al, 2018], [Bakaev et al, 2025]
- ► How many layers are necessary?
- There is no function that needs more layers than $\max\{0, x_1, \dots, x_d\}$ [Hertrich et al, 2021].
- max{0, x₁, x₂} cannot be represented with one hidden layer [Basu, Mukherjee, 17].



- ▶ Every CPWL function $f: \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_3(d) \rceil$ hidden layers [Arora et al, 2018], [Bakaev et al, 2025]
- ► How many layers are necessary?
- There is no function that needs more layers than $\max\{0, x_1, \dots, x_d\}$ [Hertrich et al, 2021].
- max{0, x₁, x₂} cannot be represented with one hidden layer [Basu, Mukherjee, 17].
- Non-constant lower bounds when restricting weights or breakpoints. [Haase, Hertrich, Loho, 23],[Averkov, Hojny Merkert, 25],[G., Hertrich, Loho, 25]

- ▶ Every CPWL function $f: \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_3(d) \rceil$ hidden layers [Arora et al, 2018], [Bakaev et al, 2025]
- ► How many layers are necessary?
- There is no function that needs more layers than $\max\{0, x_1, \dots, x_d\}$ [Hertrich et al, 2021].
- max{0, x₁, x₂} cannot be represented with one hidden layer [Basu, Mukherjee, 17].
- Non-constant lower bounds when restricting weights or breakpoints. [Haase, Hertrich, Loho, 23],[Averkov, Hojny Merkert, 25],[G., Hertrich, Loho, 25]
- ▶ In general: 2 is best known lower bound!

- ▶ Every CPWL function $f: \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_3(d) \rceil$ hidden layers [Arora et al, 2018], [Bakaev et al, 2025]
- ► How many layers are necessary?
- There is no function that needs more layers than $\max\{0, x_1, \dots, x_d\}$ [Hertrich et al, 2021].
- max{0, x₁, x₂} cannot be represented with one hidden layer [Basu, Mukherjee, 17].
- Non-constant lower bounds when restricting weights or breakpoints. [Haase, Hertrich, Loho, 23],[Averkov, Hojny Merkert, 25],[G., Hertrich, Loho, 25]
- ▶ In general: 2 is best known lower bound!

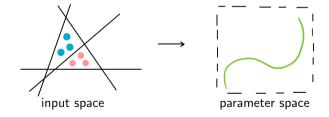
Open Question:

Is there a CPWL function that needs more than two hidden layers?? Smallest open case: $\max\{0, x_1, \dots, x_5\}$

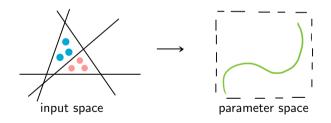
 $ightharpoonup x \mapsto f_{\theta}(x)$ is piecewise linear for fixed θ , what about $\theta \mapsto f_{\theta}(x)$ for fixed x?

- $ightharpoonup x \mapsto f_{\theta}(x)$ is piecewise linear for fixed θ , what about $\theta \mapsto f_{\theta}(x)$ for fixed x?
- For data set $X = [x_1, ..., x_m]$, fix an activation pattern $A = [a_1, ..., a_m]$ where $a_i \in \{+, -\}^{\# \text{neurons}}$ determines which neurons are active at x_i .

- \blacktriangleright $x \mapsto f_{\theta}(x)$ is piecewise linear for fixed θ , what about $\theta \mapsto f_{\theta}(x)$ for fixed x?
- For data set $X = [x_1, ..., x_m]$, fix an activation pattern $A = [a_1, ..., a_m]$ where $a_i \in \{+, -\}^{\#\text{neurons}}$ determines which neurons are active at x_i .
- lacktriangledown $heta\mapsto f_{ heta}(X)$ is multi-linear for a fixed activation pattern heta piecewise multi-linear.



- $ightharpoonup x \mapsto f_{\theta}(x)$ is piecewise linear for fixed θ , what about $\theta \mapsto f_{\theta}(x)$ for fixed x?
- For data set $X = [x_1, ..., x_m]$, fix an activation pattern $A = [a_1, ..., a_m]$ where $a_i \in \{+, -\}^{\text{#neurons}}$ determines which neurons are active at x_i .
- $m{ heta} \mapsto f_{\theta}(X)$ is multi-linear for a fixed activation pattern \to piecewise multi-linear.



Problem:

Identify equations that hold on image of $\theta \mapsto f_{\theta}(X)$

► Assuming "general" X, the parameterization for a fixed activation pattern A is equivalent to

$$\varphi_{A}(\theta) = [M_1(\theta), \ldots, M_k(\theta)],$$

where $M_i(\theta)$ is matrix given by the linear map computed on activation region a_i .

► Assuming "general" X, the parameterization for a fixed activation pattern A is equivalent to

$$\varphi_{\mathcal{A}}(\theta) = [M_1(\theta), \dots, M_k(\theta)],$$

where $M_i(\theta)$ is matrix given by the linear map computed on activation region a_i .

▶ $V_A = \overline{\operatorname{im}(\varphi_A)}$ is pattern variety \approx (closure of) functions representable over a general data set with fixed activation pattern A.

▶ Assuming "general" X, the parameterization for a fixed activation pattern A is equivalent to

$$\varphi_{A}(\theta) = [M_1(\theta), \ldots, M_k(\theta)],$$

where $M_i(\theta)$ is matrix given by the linear map computed on activation region a_i .

▶ $V_A = \overline{\operatorname{im}(\varphi_A)}$ is pattern variety \approx (closure of) functions representable over a general data set with fixed activation pattern A.

What are invariants of V_A ? Generating ideal J^A ? Dimension?

► Assuming "general" X, the parameterization for a fixed activation pattern A is equivalent to

$$\varphi_{\mathcal{A}}(\theta) = [M_1(\theta), \ldots, M_k(\theta)],$$

where $M_i(\theta)$ is matrix given by the linear map computed on activation region a_i .

▶ $V_A = \overline{\operatorname{im}(\varphi_A)}$ is pattern variety \approx (closure of) functions representable over a general data set with fixed activation pattern A.

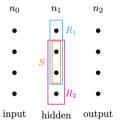
What are invariants of V_A ? Generating ideal J^A ? Dimension?

Theorem[Alexandr and Montúfar, 2025]

For shallow networks:

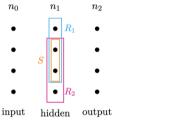
- Bounds on dimension and exact formula for bottleneck architecture
- \triangleright Set of generators contained in ideal $J^{\mathbf{A}}$.

Two Activation Regions



Let $|R_1| = r_1$, $|R_2| = r_2$, |S| = s. Let $t = r_1 + r_2 - 2s$.

Two Activation Regions



Let $|R_1| = r_1$, $|R_2| = r_2$, |S| = s.

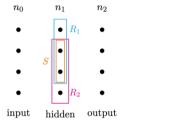
Let $t = r_1 + r_2 - 2s$.

Theorem[Alexandr and Montúfar, 2025]

The ideal $J^{\mathbf{A}}$ contains:

- 1. $(r_1 + 1)$ -minors of M_1 ;
- 2. $(r_2 + 1)$ -minors of M_2 ;
- 3. $(n_1 + 1)$ -minors of $[M_1 \mid M_2]$ and $[M_1^T \mid M_2^T]$;
- 4. (t+1)-minors of $M_1 M_2$.

Two Activation Regions



Let $|R_1| = r_1$, $|R_2| = r_2$, |S| = s. Let $t = r_1 + r_2 - 2s$.

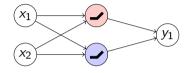
Theorem[Alexandr and Montúfar, 2025]

The ideal $J^{\mathbf{A}}$ contains:

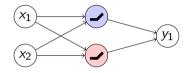
- 1. $(r_1 + 1)$ -minors of M_1 ;
- 2. $(r_2 + 1)$ -minors of M_2 ;
- 3. $(n_1 + 1)$ -minors of $[M_1 \mid M_2]$ and $[M_1^T \mid M_2^T]$;
- 4. (t+1)-minors of $M_1 M_2$.

Conjecture: no other polynomials are needed to generate the ideal.

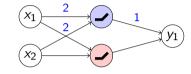
- ► Global Symmetries:
 - Permutation of neurons (P)



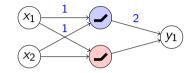
- ► Global Symmetries:
 - Permutation of neurons (P)



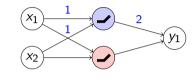
- Global Symmetries:
 - Permutation of neurons (P)
 - Scaling incoming weights with $\lambda > 0$ and outgoing weights with $\frac{1}{\lambda}$ (S).



- Global Symmetries:
 - Permutation of neurons (P)
 - Scaling incoming weights with $\lambda > 0$ and outgoing weights with $\frac{1}{\lambda}$ (S).

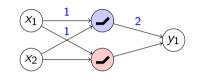


- Global Symmetries:
 - Permutation of neurons (P)
 - Scaling incoming weights with $\lambda > 0$ and outgoing weights with $\frac{1}{\lambda}$ (S).
- There are f_{θ} that uniquely determine θ up to (P) and (S). [Bui Thi Mai and Lampert, 20], [Grigsby, Lindsey and Rolnick, 23]



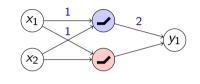
- Global Symmetries:
 - Permutation of neurons (P)
 - Scaling incoming weights with $\lambda > 0$ and outgoing weights with $\frac{1}{\lambda}$ (S).
- There are f_{θ} that uniquely determine θ up to (P) and (S). [Bui Thi Mai and Lampert, 20],

[Grigsby, Lindsey and Rolnick, 23]



Question: Can we decide when there is a nontrivial fiber? And compute it?

- Global Symmetries:
 - Permutation of neurons (P)
 - Scaling incoming weights with $\lambda > 0$ and outgoing weights with $\frac{1}{\lambda}$ (S).
- There are f_{θ} that uniquely determine θ up to (P) and (S). [Bui Thi Mai and Lampert, 20], [Grigsby, Lindsey and Rolnick, 23]

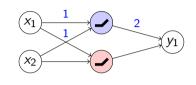


Question: Can we decide when there is a nontrivial fiber? And compute it?

In progress:

For two hidden layers $\mathbb{R}^d \to \mathbb{R}^{n_1} \to \mathbb{R}^{n_2} \to \mathbb{R}$ with $n_1 \leq d$ and generic θ , we can detect non-trivial fibers. We can probably also compute them.

- Global Symmetries:
 - Permutation of neurons (P)
 - Scaling incoming weights with $\lambda > 0$ and outgoing weights with $\frac{1}{\lambda}$ (S).
- There are f_{θ} that uniquely determine θ up to (P) and (S). [Bui Thi Mai and Lampert, 20], [Grigsby, Lindsey and Rolnick, 23]



Question: Can we decide when there is a nontrivial fiber? And compute it?

In progress:

For two hidden layers $\mathbb{R}^d \to \mathbb{R}^{n_1} \to \mathbb{R}^{n_2} \to \mathbb{R}$ with $n_1 \leq d$ and generic θ , we can detect non-trivial fibers. We can probably also compute them.

Open Questions:

What about $n_1 \ge d$? Or more hidden layers?

Thank you! Questions?