Complexity of Deciding Injectivity and Surjectivity of ReLU Networks

Math Machine Learning Seminar

November 8, 2025

Vincent Froese, Moritz Grillo and Martin Skutella (TU Berlin)

▶ A neural network is a parameterized function $\phi_{\theta} \colon \mathbb{R}^d \to \mathbb{R}^m$.

- ▶ A neural network is a parameterized function $\phi_{\theta} : \mathbb{R}^d \to \mathbb{R}^m$.
- ▶ Training of neural networks = optimizing θ with heuristics in order to fit ϕ_{θ} to some data set

- ▶ A neural network is a parameterized function $\phi_{\theta} : \mathbb{R}^d \to \mathbb{R}^m$.
- lacktriangle Training of neural networks = optimizing heta with heuristics in order to fit $\phi_{ heta}$ to some data set
- Given θ , what can we say about the properties of ϕ_{θ} ?

- ▶ A neural network is a parameterized function $\phi_{\theta} : \mathbb{R}^d \to \mathbb{R}^m$.
- ▶ Training of neural networks = optimizing θ with heuristics in order to fit ϕ_{θ} to some data set
- Given θ , what can we say about the properties of ϕ_{θ} ?
- Injectivity is important whenever invertibility is relevant (inverse problems or likelihood estimation)

- ▶ A neural network is a parameterized function $\phi_{\theta} : \mathbb{R}^d \to \mathbb{R}^m$.
- \blacktriangleright Training of neural networks = optimizing θ with heuristics in order to fit ϕ_θ to some data set
- ▶ Given θ , what can we say about the properties of ϕ_{θ} ?
- Injectivity is important whenever invertibility is relevant (inverse problems or likelihood estimation)
- Surjectivity is closely related to network verification.

- ▶ A neural network is a parameterized function $\phi_{\theta} : \mathbb{R}^d \to \mathbb{R}^m$.
- ▶ Training of neural networks = optimizing θ with heuristics in order to fit ϕ_{θ} to some data set
- ▶ Given θ , what can we say about the properties of ϕ_{θ} ?
- Injectivity is important whenever invertibility is relevant (inverse problems or likelihood estimation)
- Surjectivity is closely related to network verification.
- Network verification: Given $P \subseteq \mathbb{R}^d$, $Q \subseteq \mathbb{R}^m$, does it hold that $\phi_{\theta}(P) \subseteq Q$? Important in safety-critical applications.

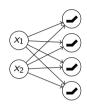
Overview

ReLU-Layers and their Geometry

Computational Complexity of Injectivity

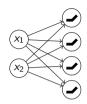
Computational Complexity of Surjectivity

ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$



ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d \to \mathbb{R}^m, \quad \mathbf{x} \mapsto [\mathbf{W}\mathbf{x} + \mathbf{b}]_+$$

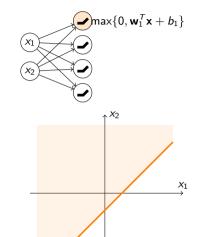


ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d \to \mathbb{R}^m, \quad \mathbf{x} \mapsto [\mathbf{W}\mathbf{x} + \mathbf{b}]_+$$

Terminology

lacktriangle output neuron i active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$

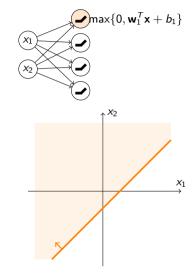


ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d \to \mathbb{R}^m, \quad \mathbf{x} \mapsto [\mathbf{W}\mathbf{x} + \mathbf{b}]_+$$

- ightharpoonup output neuron i active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$

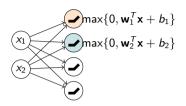


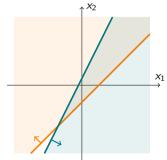
ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d \to \mathbb{R}^m, \quad \mathbf{x} \mapsto [\mathbf{W}\mathbf{x} + \mathbf{b}]_+$$

- ightharpoonup output neuron i active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$



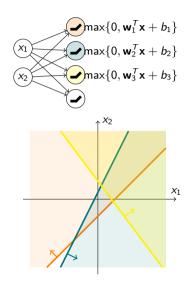


ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d \to \mathbb{R}^m, \quad \mathbf{x} \mapsto [\mathbf{W}\mathbf{x} + \mathbf{b}]_+$$

- ightharpoonup output neuron i active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$

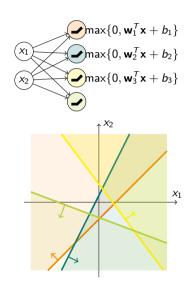


ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d \to \mathbb{R}^m, \quad \mathbf{x} \mapsto [\mathbf{W}\mathbf{x} + \mathbf{b}]_+$$

- ightharpoonup output neuron i active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \geq 0$
- output neurons induce (oriented) hyperplanes

$$H_{\mathbf{w}_i,b_i} \coloneqq \{\mathbf{w}_i^T\mathbf{x} + b_i = 0\} \subseteq \mathbb{R}^d$$



ReLU-layer with d input and m output neurons given by weight matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, bias vector $\mathbf{b} \in \mathbb{R}^m$ Computes map

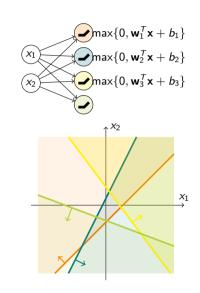
$$\phi_{\mathbf{W},\mathbf{b}} \colon \mathbb{R}^d \to \mathbb{R}^m, \quad \mathbf{x} \mapsto [\mathbf{W}\mathbf{x} + \mathbf{b}]_+$$

Terminology

- ▶ output neuron *i* active at $\mathbf{x} \in \mathbb{R}^d$ if $\mathbf{w}_i^T \mathbf{x} + b_i \ge 0$
- output neurons induce (oriented) hyperplanes

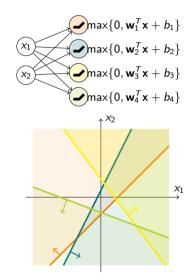
$$H_{\mathbf{w}_i,b_i} := {\mathbf{w}_i^T \mathbf{x} + b_i = 0} \subseteq \mathbb{R}^d$$

▶ they partition \mathbb{R}^d into polyhedral cells, corresponding to subsets of active neurons



ReLU-Layer Injectivity

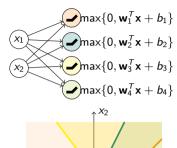
Given: matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, vector $\mathbf{b} \in \mathbb{R}^m$ Question: is the map $\phi_{\mathbf{W}, \mathbf{b}}$ injective?

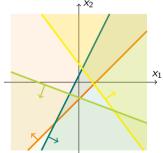


ReLU-Layer Injectivity

Given: matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, vector $\mathbf{b} \in \mathbb{R}^m$ Question: is the map $\phi_{\mathbf{W},\mathbf{b}}$ injective?

Theorem [Puthawala et al., 2022] $\phi_{\mathbf{W},\mathbf{b}}$ injective \iff for every cell, active neurons (rows of \mathbf{W}) have rank d





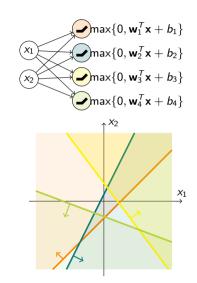
ReLU-Layer Injectivity

Given: matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, vector $\mathbf{b} \in \mathbb{R}^m$ Question: is the map $\phi_{\mathbf{W},\mathbf{b}}$ injective?

Theorem [Puthawala et al., 2022] $\phi_{\mathbf{W},\mathbf{b}}$ injective \iff for every cell, active neurons (rows of \mathbf{W}) have rank d

Computational Complexity

• number of cells in $O(\min\{2^m, m^d\})$ [Zaslavsky, 1975]



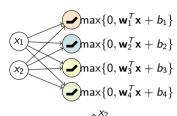
ReLU-Layer Injectivity

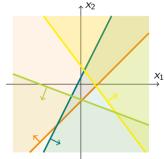
Given: matrix $\mathbf{W} \in \mathbb{R}^{m \times d}$, vector $\mathbf{b} \in \mathbb{R}^m$ Question: is the map $\phi_{\mathbf{W},\mathbf{b}}$ injective?

Theorem [Puthawala et al., 2022] $\phi_{\mathbf{W},\mathbf{b}}$ injective \iff for every cell, active neurons (rows of \mathbf{W}) have rank d

Computational Complexity

- number of cells in $O(\min\{2^m, m^d\})$ [Zaslavsky, 1975]
- ▶ algorithm with runtime $O(\text{poly}(m) \min\{2^m, m^d\})$





Theorem [Froese, G., Skutella]

 $\ensuremath{\operatorname{ReLU-Layer}}$ Injectivity is $\ensuremath{\operatorname{coNP-complete}}.$

Theorem [Froese, G., Skutella]

Relu-layer Injectivity is coNP-complete.

Proof.

Reduction from complement of:

ACYCLIC 2-DISCONNECTION

Input: A digraph D = (V, A).

Question: Is there a subset $A' \subseteq A$ of arcs such

that (V,A') is acyclic and $(V,A\setminus A')$ is not

weakly connected?

Theorem [Froese, G., Skutella]

RELU-LAYER INJECTIVITY is coNP-complete.

Proof.

Reduction from complement of:

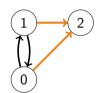
ACYCLIC 2-DISCONNECTION

Input: A digraph D = (V, A).

Question: Is there a subset $A' \subseteq A$ of arcs such

that (V,A') is acyclic and $(V,A\setminus A')$ is not

weakly connected?



Theorem [Froese, G., Skutella]

Relu-layer Injectivity is coNP-complete.

Proof.

Reduction from complement of:

ACYCLIC 2-DISCONNECTION

Input: A digraph D = (V, A).

Question: Is there a subset $A' \subseteq A$ of arcs such

that (V,A') is acyclic and $(V,A\setminus A')$ is not

weakly connected?

Theorem [Froese, G., Skutella]

Relu-layer Injectivity is coNP-complete.

Proof.

Reduction from complement of:

ACYCLIC 2-DISCONNECTION

Input: A digraph D = (V, A).

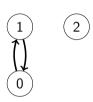
Question: Is there a subset $A' \subseteq A$ of arcs such

that (V,A') is acyclic and $(V,A\setminus A')$ is not

weakly connected?

Theorem [Froese, G., Skutella]

ACYCLIC 2-DISCONNECTION is NP-complete.



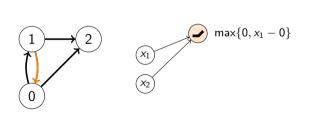
▶ Encode Acyclic 2-disconnection as ReLU-layer Injectivity

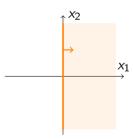
- ► Encode Acyclic 2-disconnection as ReLU-layer Injectivity
- ▶ Given a digraph D = (V, A) with $V = \{0, ..., d\}$ and m = |A|, we construct the following ReLU-layer $\phi \colon \mathbb{R}^d \to \mathbb{R}^m$ by

$$\phi(\mathbf{x}) = (\max\{0, \mathbf{x}_i - \mathbf{x}_j\})_{(i,j) \in A},$$

- ► Encode Acyclic 2-disconnection as ReLU-layer Injectivity
- ▶ Given a digraph D = (V, A) with $V = \{0, ..., d\}$ and m = |A|, we construct the following ReLU-layer $\phi \colon \mathbb{R}^d \to \mathbb{R}^m$ by

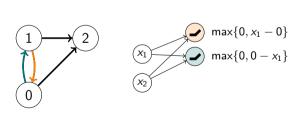
$$\phi(\mathbf{x}) = (\max\{0, \mathbf{x}_i - \mathbf{x}_j\})_{(i,j) \in A},$$

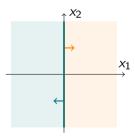




- ► Encode Acyclic 2-disconnection as ReLU-layer Injectivity
- ▶ Given a digraph D = (V, A) with $V = \{0, ..., d\}$ and m = |A|, we construct the following ReLU-layer $\phi : \mathbb{R}^d \to \mathbb{R}^m$ by

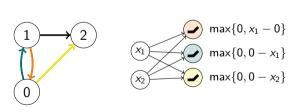
$$\phi(\mathbf{x}) = (\max\{0, \mathbf{x}_i - \mathbf{x}_j\})_{(i,j) \in A},$$

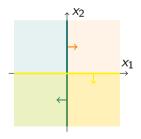




- ► Encode Acyclic 2-disconnection as ReLU-layer Injectivity
- ▶ Given a digraph D = (V, A) with $V = \{0, ..., d\}$ and m = |A|, we construct the following ReLU-layer $\phi : \mathbb{R}^d \to \mathbb{R}^m$ by

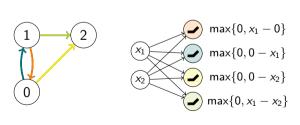
$$\phi(\mathbf{x}) = (\max\{0, \mathbf{x}_i - \mathbf{x}_j\})_{(i,j) \in A},$$

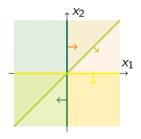




- ► Encode Acyclic 2-disconnection as ReLU-layer Injectivity
- ▶ Given a digraph D = (V, A) with $V = \{0, ..., d\}$ and m = |A|, we construct the following ReLU-layer $\phi : \mathbb{R}^d \to \mathbb{R}^m$ by

$$\phi(\mathbf{x}) = (\max\{0, \mathbf{x}_i - \mathbf{x}_j\})_{(i,j) \in A},$$

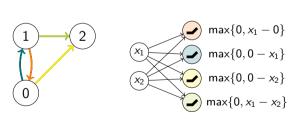


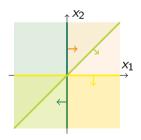


- ► Encode Acyclic 2-disconnection as ReLU-Layer Injectivity
- ▶ Given a digraph D = (V, A) with $V = \{0, ..., d\}$ and m = |A|, we construct the following ReLU-layer $\phi : \mathbb{R}^d \to \mathbb{R}^m$ by

$$\phi(\mathbf{x}) = (\max\{0, \mathbf{x}_i - \mathbf{x}_j\})_{(i,j) \in A},$$

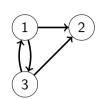
where $\mathbf{x}_0 := 0$.

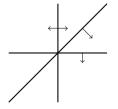




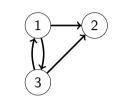
lacktriangle All hyperplanes are of the form $\{{f x}_i={f x}_j\}$ for $i,j\in[d+1]$

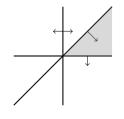
For all $\pi \in \mathcal{S}_{d+1}$ it holds that ϕ is linear on $C_{\pi} = \{\mathbf{x}_{\pi(1)} \leq \ldots \leq \mathbf{x}_{\pi(d+1)}\}$ where $\mathbf{x}_{d+1} \coloneqq 0$.



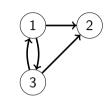


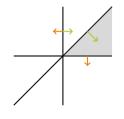
- For all $\pi \in \mathcal{S}_{d+1}$ it holds that ϕ is linear on $C_{\pi} = \{\mathbf{x}_{\pi(1)} \leq \ldots \leq \mathbf{x}_{\pi(d+1)}\}$ where $\mathbf{x}_{d+1} \coloneqq 0$.
- $lackloain \phi$ is injective if and only if $\mathbf{W}_{C_{\pi}}$ has full rank for all $\pi \in \mathcal{S}_{d+1}$



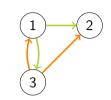


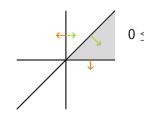
- For all $\pi \in \mathcal{S}_{d+1}$ it holds that ϕ is linear on $C_{\pi} = \{\mathbf{x}_{\pi(1)} \leq \ldots \leq \mathbf{x}_{\pi(d+1)}\}$ where $\mathbf{x}_{d+1} \coloneqq 0$.
- ϕ is injective if and only if $\mathbf{W}_{\mathcal{C}_{\pi}}$ has full rank for all $\pi \in \mathcal{S}_{d+1}$
- A neuron corresponding to the arc (i,j) is active on C_{π} if and only if $\pi(i) > \pi(j)$



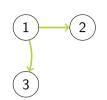


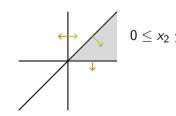
- For all $\pi \in \mathcal{S}_{d+1}$ it holds that ϕ is linear on $C_{\pi} = \{\mathbf{x}_{\pi(1)} \leq \ldots \leq \mathbf{x}_{\pi(d+1)}\}$ where $\mathbf{x}_{d+1} \coloneqq 0$.
- $lacklosim \phi$ is injective if and only if \mathbf{W}_{C_π} has full rank for all $\pi \in \mathcal{S}_{d+1}$
- A neuron corresponding to the arc (i,j) is active on C_{π} if and only if $\pi(i) > \pi(j)$
- Let $A_{\pi} = \{(i,j) \in A \mid \pi(i) < \pi(j)\} \subseteq A$ be the (acyclic) set of arcs corresponding to the inactive neurons on C_{π} and $A \setminus A_{\pi}$ the set of arcs corresponding to the active neurons on C_{π}



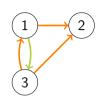


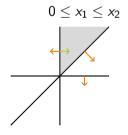
- For all $\pi \in \mathcal{S}_{d+1}$ it holds that ϕ is linear on $C_{\pi} = \{\mathbf{x}_{\pi(1)} \leq \ldots \leq \mathbf{x}_{\pi(d+1)}\}$ where $\mathbf{x}_{d+1} \coloneqq 0$.
- $lacklosim \phi$ is injective if and only if \mathbf{W}_{C_π} has full rank for all $\pi \in \mathcal{S}_{d+1}$
- A neuron corresponding to the arc (i,j) is active on C_{π} if and only if $\pi(i) > \pi(j)$
- Let $A_{\pi} = \{(i,j) \in A \mid \pi(i) < \pi(j)\} \subseteq A$ be the (acyclic) set of arcs corresponding to the inactive neurons on C_{π} and $A \setminus A_{\pi}$ the set of arcs corresponding to the active neurons on C_{π}



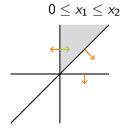


- For all $\pi \in \mathcal{S}_{d+1}$ it holds that ϕ is linear on $C_{\pi} = \{\mathbf{x}_{\pi(1)} \leq \ldots \leq \mathbf{x}_{\pi(d+1)}\}$ where $\mathbf{x}_{d+1} \coloneqq 0$.
- $m \phi$ is injective if and only if ${f W}_{C_\pi}$ has full rank for all $\pi \in \mathcal{S}_{d+1}$
- A neuron corresponding to the arc (i,j) is active on C_{π} if and only if $\pi(i) > \pi(j)$
- Let $A_{\pi} = \{(i,j) \in A \mid \pi(i) < \pi(j)\} \subseteq A$ be the (acyclic) set of arcs corresponding to the inactive neurons on C_{π} and $A \setminus A_{\pi}$ the set of arcs corresponding to the active neurons on C_{π}

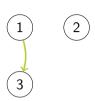


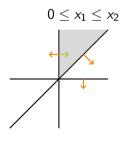


- For all $\pi \in \mathcal{S}_{d+1}$ it holds that ϕ is linear on $C_{\pi} = \{\mathbf{x}_{\pi(1)} \leq \ldots \leq \mathbf{x}_{\pi(d+1)}\}$ where $\mathbf{x}_{d+1} \coloneqq 0$.
- $m{\phi}$ is injective if and only if $\mathbf{W}_{C_{\pi}}$ has full rank for all $\pi \in \mathcal{S}_{d+1}$
- A neuron corresponding to the arc (i,j) is active on C_{π} if and only if $\pi(i) > \pi(j)$
- Let $A_{\pi} = \{(i,j) \in A \mid \pi(i) < \pi(j)\} \subseteq A$ be the (acyclic) set of arcs corresponding to the inactive neurons on C_{π} and $A \setminus A_{\pi}$ the set of arcs corresponding to the active neurons on C_{π}



- For all $\pi \in \mathcal{S}_{d+1}$ it holds that ϕ is linear on $C_{\pi} = \{\mathbf{x}_{\pi(1)} \leq \ldots \leq \mathbf{x}_{\pi(d+1)}\}$ where $\mathbf{x}_{d+1} \coloneqq 0$.
- $lackloain \phi$ is injective if and only if \mathbf{W}_{C_π} has full rank for all $\pi \in \mathcal{S}_{d+1}$
- A neuron corresponding to the arc (i,j) is active on C_{π} if and only if $\pi(i) > \pi(j)$
- Let $A_{\pi} = \{(i,j) \in A \mid \pi(i) < \pi(j)\} \subseteq A$ be the (acyclic) set of arcs corresponding to the inactive neurons on C_{π} and $A \setminus A_{\pi}$ the set of arcs corresponding to the active neurons on C_{π}
- ▶ $D_{\pi} = (V, A \setminus A_{\pi})$ is weakly connected \iff **W**_{C_{π} has full rank.}





Not Injective $\iff \exists$ Acyclic Disconnection

 $ightharpoonup \phi$ is not injective \iff

Not Injective ←⇒ ∃ Acyclic Disconnection

- $\blacktriangleright \phi$ is not injective \iff
- ▶ there is $\pi \in \mathcal{S}_{d+1}$ such that $\mathbf{W}_{C_{\pi}}$ does not have full rank \iff

Not Injective ←⇒ ∃ Acyclic Disconnection

- $\blacktriangleright \phi$ is not injective \iff
- ▶ there is $\pi \in \mathcal{S}_{d+1}$ such that $\mathbf{W}_{\mathcal{C}_{\pi}}$ does not have full rank \iff
- ▶ there is A_{π} such that (V, A_{π}) is acyclic and $(V, A \setminus A_{\pi})$ is not weakly connected.

Not Injective ←⇒ ∃ Acyclic Disconnection

- $\blacktriangleright \phi$ is not injective \iff
- ▶ there is $\pi \in \mathcal{S}_{d+1}$ such that $\mathbf{W}_{\mathcal{C}_{\pi}}$ does not have full rank \iff
- ▶ there is A_{π} such that (V, A_{π}) is acyclic and $(V, A \setminus A_{\pi})$ is not weakly connected.
- ▶ there is $A' \subseteq A$ such that (V, A') is acyclic and $(V, A \setminus A')$ is not weakly connected.

An FPT-Algorithm

► Can we do better than $O(m^d)$?

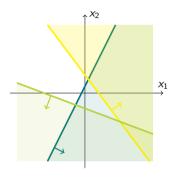
An FPT-Algorithm

- ightharpoonup Can we do better than $O(m^d)$?
- Yes!

Theorem [Froese, G., Skutella. 2024]

ReLU-Layer Injectivity can be solved in $O(poly(m)(d+1)^d)$ time (i.e., FPT for dimension d).

Task: Find cell whose active neurons have rank < d or decide that no such cell exists

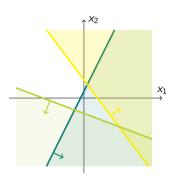


Task: Find cell whose active neurons have rank < d or decide that no such cell exists

 x_2

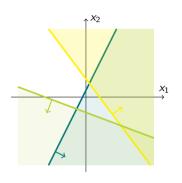
Simpler: does every cell have at least one active neuron?

Task: Find cell whose active neurons have rank < d or decide that no such cell exists



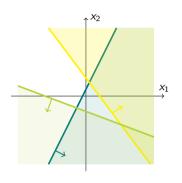
Simpler: does every cell have at least one active neuron? – if not, then $\phi_{\mathbf{W},\mathbf{h}}$ is *not* injective

Task: Find cell whose active neurons have rank < d or decide that no such cell exists



Simpler: does every cell have at least one active neuron? — if not, then $\phi_{\mathbf{W},\mathbf{b}}$ is *not* injective Equivalent: is intersection of halfspace-complements empty?

Task: Find cell whose active neurons have rank < d or decide that no such cell exists



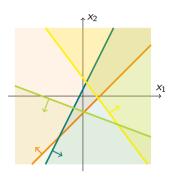
Simpler: does every cell have at least one active neuron?

– if not, then $\phi_{\mathbf{W},\mathbf{b}}$ is *not* injective

Equivalent: is intersection of halfspace-complements empty?

ightarrow efficiently solvable via LP

Task: Find cell whose active neurons have rank < d or decide that no such cell exists



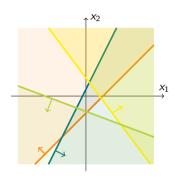
Simpler: does every cell have at least one active neuron?

- if not, then $\phi_{\mathbf{W},\mathbf{b}}$ is *not* injective

Equivalent: is intersection of halfspace-complements empty?

ightarrow efficiently solvable via LP

Task: Find cell whose active neurons have rank < d or decide that no such cell exists



Simpler: does every cell have at least one active neuron?

- if not, then $\phi_{\mathbf{W},\mathbf{b}}$ is *not* injective

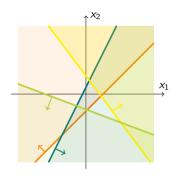
Equivalent: is intersection of halfspace-complements empty?

ightarrow efficiently solvable via LP

Theorem [Helly 1913; Radon 1921; Kőnig 1922]

Let $X_1,\ldots,X_m\subseteq\mathbb{R}^d$ convex with $\bigcap_{i=1}^m X_i=\emptyset$.

Task: Find cell whose active neurons have rank < d or decide that no such cell exists



Simpler: does every cell have at least one active neuron?

– if not, then $\phi_{\mathbf{W},\mathbf{b}}$ is *not* injective

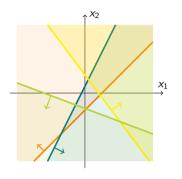
Equivalent: is intersection of halfspace-complements empty?

ightarrow efficiently solvable via LP

Theorem [Helly 1913; Radon 1921; Kőnig 1922]

Let $X_1,\ldots,X_m\subseteq\mathbb{R}^d$ convex with $\bigcap_{i=1}^m X_i=\emptyset$. Then: there is $I\subseteq\{1,\ldots,m\}$ with $|I|\leq d+1$ and $\bigcap_{i\in I}X_i=\emptyset$.

Task: Find cell whose active neurons have rank < d or decide that no such cell exists



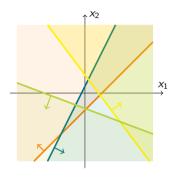
Algorithmic Idea:

Simpler: does every cell have at least one active neuron? — if not, then $\phi_{\mathbf{W},\mathbf{b}}$ is not injective Equivalent: is intersection of halfspace-complements empty?

ightarrow efficiently solvable via LP

Theorem [Helly 1913; Radon 1921; Kőnig 1922] Let $X_1, \ldots, X_m \subseteq \mathbb{R}^d$ convex with $\bigcap_{i=1}^m X_i = \emptyset$. Then: there is $I \subseteq \{1, \ldots, m\}$ with $|I| \le d+1$ and $\bigcap_{i \in I} X_i = \emptyset$.

Task: Find cell whose active neurons have rank < d or decide that no such cell exists



Simpler: does every cell have at least one active neuron?

- if not, then $\phi_{\mathbf{W},\mathbf{b}}$ is *not* injective

Equivalent: is intersection of halfspace-complements empty?

ightarrow efficiently solvable via LP

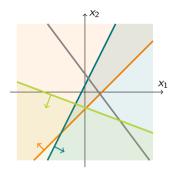
Theorem [Helly 1913; Radon 1921; Kőnig 1922]

Let $X_1, \ldots, X_m \subseteq \mathbb{R}^d$ convex with $\bigcap_{i=1}^m X_i = \emptyset$. Then: there is $I \subseteq \{1, \ldots, m\}$ with $|I| \le d+1$ and $\bigcap_{i \in I} X_i = \emptyset$.

Algorithmic Idea:

▶ find (at most) d+1 neurons whose halfspaces cover \mathbb{R}^d (if not, $\phi_{\mathbf{W},\mathbf{b}}$ is not injective)

Task: Find cell whose active neurons have rank < d or decide that no such cell exists



Simpler: does every cell have at least one active neuron?

- if not, then $\phi_{\mathbf{W},\mathbf{b}}$ is *not* injective

Equivalent: is intersection of halfspace-complements empty?

ightarrow efficiently solvable via LP

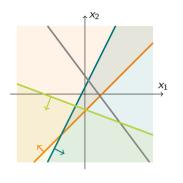
Theorem [Helly 1913; Radon 1921; Kőnig 1922]

Let $X_1, \ldots, X_m \subseteq \mathbb{R}^d$ convex with $\bigcap_{i=1}^m X_i = \emptyset$. Then: there is $I \subseteq \{1, \ldots, m\}$ with $|I| \le d+1$ and $\bigcap_{i \in I} X_i = \emptyset$.

Algorithmic Idea:

▶ find (at most) d+1 neurons whose halfspaces cover \mathbb{R}^d (if not, $\phi_{\mathbf{W},\mathbf{b}}$ is not injective)

Task: Find cell whose active neurons have rank < d or decide that no such cell exists



Simpler: does every cell have at least one active neuron?

– if not, then $\phi_{\mathbf{W},\mathbf{b}}$ is *not* injective

Equivalent: is intersection of halfspace-complements empty?

ightarrow efficiently solvable via LP

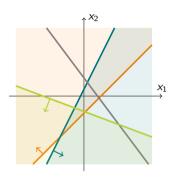
Theorem [Helly 1913; Radon 1921; Kőnig 1922]

Let $X_1, \ldots, X_m \subseteq \mathbb{R}^d$ convex with $\bigcap_{i=1}^m X_i = \emptyset$. Then: there is $I \subseteq \{1, \ldots, m\}$ with $|I| \le d+1$ and $\bigcap_{i \in I} X_i = \emptyset$.

Algorithmic Idea:

- ▶ find (at most) d+1 neurons whose halfspaces cover \mathbb{R}^d (if not, $\phi_{\mathbf{W},\mathbf{b}}$ is not injective)
- ightharpoonup branch over the d+1 halfspaces; always discard linearly dependent neurons

Task: Find cell whose active neurons have rank < d or decide that no such cell exists



Simpler: does every cell have at least one active neuron?

– if not, then $\phi_{\mathbf{W},\mathbf{b}}$ is *not* injective

Equivalent: is intersection of halfspace-complements empty?

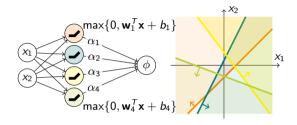
 \rightarrow efficiently solvable via LP

Theorem [Helly 1913; Radon 1921; Kőnig 1922]

Let $X_1, \ldots, X_m \subseteq \mathbb{R}^d$ convex with $\bigcap_{i=1}^m X_i = \emptyset$. Then: there is $I \subseteq \{1, \ldots, m\}$ with $|I| \le d+1$ and $\bigcap_{i \in I} X_i = \emptyset$.

Algorithmic Idea:

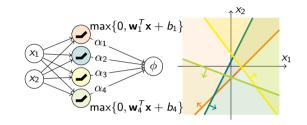
- ▶ find (at most) d+1 neurons whose halfspaces cover \mathbb{R}^d (if not, $\phi_{\mathbf{W},\mathbf{b}}$ is not injective)
- \triangleright branch over the d+1 halfspaces; always discard linearly dependent neurons
- \triangleright branching strictly increases rank of active neurons \rightarrow depth of branching at most d



Question: is map $\phi: \mathbb{R}^d \to \mathbb{R}$ with

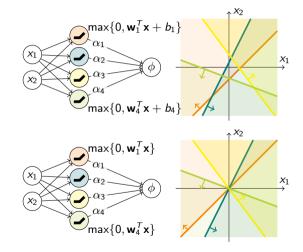
$$\phi(\mathbf{x}) \coloneqq \sum_{i=1}^{m} \alpha_i \max\{0, \mathbf{w}_i^T \mathbf{x} + b_i\}$$

surjective?



Question: is map $\phi : \mathbb{R}^d \to \mathbb{R}$ with $\phi(\mathbf{x}) := \sum_{i=1}^m \alpha_i \max\{0, \mathbf{w}_i^T \mathbf{x} + b_i\}$ surjective?

Observation 1. W.l.o.g. $\mathbf{b} = \mathbf{0}$ $\rightarrow \phi$ is positively homogeneous, i.e., $\phi(\lambda \mathbf{x}) = \lambda \phi(\mathbf{x})$ for all $\lambda > 0$.



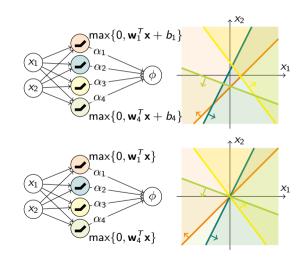
Question: is map $\phi: \mathbb{R}^d \to \mathbb{R}$ with

$$\phi(\mathbf{x}) := \sum_{i=1}^{m} \alpha_i \max\{0, \mathbf{w}_i^T \mathbf{x} + b_i\}$$
 surjective?

Observation 1. W.l.o.g. $\mathbf{b} = \mathbf{0}$ $\rightarrow \phi$ is positively homogeneous, i.e., $\phi(\lambda \mathbf{x}) = \lambda \phi(\mathbf{x})$ for all $\lambda > 0$.

Observation 2. The problem is equivalent to:

$$\exists \mathbf{x} \in \mathbb{R}^d : \phi(\mathbf{x}) > 0$$
?



NP-Completeness of 2-Layer Relu-Positivity

Theorem [Froese,G.,Skutella] Deciding if there exists $\mathbf{x} \in \mathbb{R}^d$ such that $\phi(\mathbf{x}) > 0$ is NP-complete.

NP-Completeness of 2-Layer Relu-Positivity

Theorem [Froese, G., Skutella]

Deciding if there exists $\mathbf{x} \in \mathbb{R}^d$ such that $\phi(\mathbf{x}) > 0$ is NP-complete.

Proof.

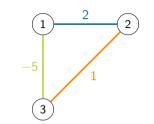
Reduction from NP-complete problem:

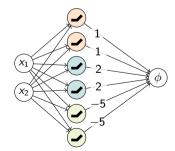
Positive Cut

Input: A graph $G = (V = \{1, ... n\}, E)$ and a weight function $c: E \to \mathbb{Z}$. **Question:** Is there a subset $S \subseteq V$ such that $\delta(S) \coloneqq \sum_{\substack{\{u,v\} \in E \\ v \in S, u \notin S}} c(u,v) > 0$?

▶ Define the 2-layer ReLU neural network $\phi \colon \mathbb{R}^n \to \mathbb{R}$ with

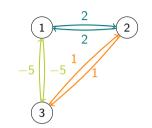
$$\phi(\mathbf{x}) = \sum_{\{i,j\} \in E} c(\{i,j\}) \cdot ([\mathbf{x}_i - \mathbf{x}_j]_+ + [\mathbf{x}_j - \mathbf{x}_i]_+)$$

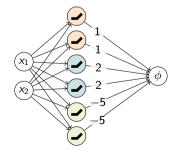




▶ Define the 2-layer ReLU neural network $\phi \colon \mathbb{R}^n \to \mathbb{R}$ with

$$\phi(\mathbf{x}) = \sum_{\{i,j\}\in E} c(\{i,j\}) \cdot ([\mathbf{x}_i - \mathbf{x}_j]_+ + [\mathbf{x}_j - \mathbf{x}_i]_+)$$



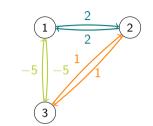


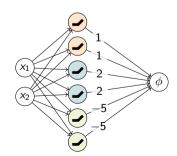
▶ Define the 2-layer ReLU neural network $\phi \colon \mathbb{R}^n \to \mathbb{R}$ with

$$\phi(\mathbf{x}) = \sum_{\{i,j\}\in E} c(\{i,j\}) \cdot ([\mathbf{x}_i - \mathbf{x}_j]_+ + [\mathbf{x}_j - \mathbf{x}_i]_+)$$

▶ For a subset $S \subseteq V$, let $\mathbb{1}_S \coloneqq \sum_{i \in S} \mathbf{e}_i \in \mathbb{R}^n$, it holds that

$$\phi(\mathbb{1}_S) = \delta(S) = \sum_{u \in S, v \notin S} c(\{u, v\})$$





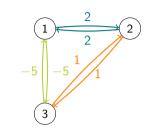
▶ Define the 2-layer ReLU neural network $\phi \colon \mathbb{R}^n \to \mathbb{R}$ with

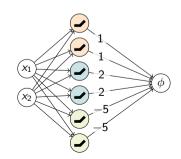
$$\phi(\mathbf{x}) = \sum_{\{i,j\} \in E} c(\{i,j\}) \cdot ([\mathbf{x}_i - \mathbf{x}_j]_+ + [\mathbf{x}_j - \mathbf{x}_i]_+)$$

▶ For a subset $S \subseteq V$, let $\mathbb{1}_S \coloneqq \sum_{i \in S} \mathbf{e}_i \in \mathbb{R}^n$, it holds that

$$\phi(\mathbb{1}_S) = \delta(S) = \sum_{u \in S, v \notin S} c(\{u, v\})$$

 $\blacktriangleright \ \phi$ attains a positive value if and only if δ does





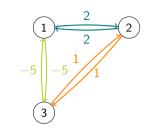
▶ Define the 2-layer ReLU neural network $\phi \colon \mathbb{R}^n \to \mathbb{R}$ with

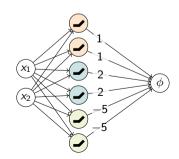
$$\phi(\mathbf{x}) = \sum_{\{i,j\} \in E} c(\{i,j\}) \cdot ([\mathbf{x}_i - \mathbf{x}_j]_+ + [\mathbf{x}_j - \mathbf{x}_i]_+)$$

▶ For a subset $S \subseteq V$, let $\mathbb{1}_S := \sum_{i \in S} \mathbf{e}_i \in \mathbb{R}^n$, it holds that

$$\phi(\mathbb{1}_S) = \delta(S) = \sum_{u \in S, v \notin S} c(\{u, v\})$$

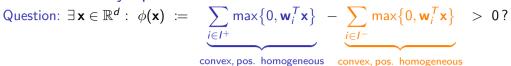
- lacktriangledown ϕ attains a positive value if and only if δ does
- ▶ Remark: ϕ is Lovász extension of $\delta \colon 2^V \to \mathbb{Z}$.





Translation to Polytopal World

Question:
$$\exists \mathbf{x} \in \mathbb{R}^d$$
 : $\phi(\mathbf{x}) := \sum_{i \in I}$



Translation to Polytopal World

Question:
$$\exists \mathbf{x} \in \mathbb{R}^d$$
: $\phi(\mathbf{x}) := \sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\} - \sum_{i \in I^-} \max\{0, \mathbf{w}_i^T \mathbf{x}\} > 0$?

$$\mathcal{F}_d := \{ f : \mathbb{R}^d \to \mathbb{R} \mid f \text{ CPWL, convex, p.h.} \}$$

$$\mathcal{P}_d \coloneqq \{P \subseteq \mathbb{R}^d \mid P \text{ polytope}\}$$

Question:
$$\exists \mathbf{x} \in \mathbb{R}^d$$
: $\phi(\mathbf{x}) := \sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\} - \sum_{i \in I^-} \max\{0, \mathbf{w}_i^T \mathbf{x}\} > 0$?

$$\mathcal{F}_d \coloneqq \{f: \mathbb{R}^d o \mathbb{R} \mid f \; \mathsf{CPWL}, \; \mathsf{convex}, \; \mathsf{p.h.}\} \qquad \qquad \underbrace{\psi} \quad \mathcal{P}_d \coloneqq \{P \subseteq \mathbb{R}^d \mid P \; \mathsf{polytope}\}$$

$$\psi(\mathsf{max}_{i \in I}\{\mathbf{a}_i^T\mathbf{x}\}) \coloneqq \mathsf{conv}\,\{\mathbf{a}_i \mid i \in I\}$$

Question:
$$\exists \mathbf{x} \in \mathbb{R}^d : \phi(\mathbf{x}) := \sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\} - \sum_{i \in I^-} \max\{0, \mathbf{w}_i^T \mathbf{x}\} > 0$$
?

$$\mathcal{F}_d \coloneqq \{f: \mathbb{R}^d \to \mathbb{R} \mid f \text{ CPWL, convex, p.h.}\} \qquad \qquad \underbrace{\psi}_{} \quad \mathcal{P}_d \coloneqq \{P \subseteq \mathbb{R}^d \mid P \text{ polytope}\} \\ \to \text{ semi-ring } (\mathcal{F}_d, \max, +) \qquad \qquad \to \text{ semi-ring } (\mathcal{P}_d, \text{conv}, +)$$

semi-ring isomorphism: $\psi(\max_{i \in I} \{\mathbf{a}_i^T \mathbf{x}\}) \coloneqq \text{conv} \{\mathbf{a}_i \mid i \in I\}$

Question:
$$\exists \mathbf{x} \in \mathbb{R}^d$$
: $\phi(\mathbf{x}) := \sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\} - \sum_{i \in I^-} \max\{0, \mathbf{w}_i^T \mathbf{x}\} > 0$?

$$\mathcal{F}_d \coloneqq \{f : \mathbb{R}^d \to \mathbb{R} \mid f \text{ CPWL, convex, p.h.}\}\ \ \ \, \underbrace{\psi} \ \ \, \mathcal{P}_d \coloneqq \{P \subseteq \mathbb{R}^d \mid P \text{ polytope}\}\ \ \ \ \, \to \text{ semi-ring } (\mathcal{F}_d, \text{max}, +)$$

Question:
$$\exists \mathbf{x} \in \mathbb{R}^d$$
: $\phi(\mathbf{x}) := \sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\} - \sum_{i \in I^-} \max\{0, \mathbf{w}_i^T \mathbf{x}\} > 0$?

$$\mathcal{F}_d \coloneqq \{f : \mathbb{R}^d \to \mathbb{R} \mid f \text{ CPWL, convex, p.h.}\}\ \ \ \, \underbrace{\psi} \ \ \, \mathcal{P}_d \coloneqq \{P \subseteq \mathbb{R}^d \mid P \text{ polytope}\}\ \ \ \ \, \to \text{ semi-ring } (\mathcal{F}_d, \text{max}, +)$$

semi-ring isomorphism:
$$\psi(\max_{i \in I} \{\mathbf{a}_i^T \mathbf{x}\}) := \text{conv} \{\mathbf{a}_i \mid i \in I\}$$

$$\psi(\sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\}) = \sum_{i \in I^+} \psi(\max\{0, \mathbf{w}_i^T \mathbf{x}\})$$

Question:
$$\exists \mathbf{x} \in \mathbb{R}^d$$
: $\phi(\mathbf{x}) := \sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\} - \sum_{i \in I^-} \max\{0, \mathbf{w}_i^T \mathbf{x}\} > 0$?

$$\mathcal{F}_d \coloneqq \{f: \mathbb{R}^d \to \mathbb{R} \mid f \text{ CPWL, convex, p.h.} \}$$

$$\to \text{ semi-ring } (\mathcal{F}_d, \text{max}, +)$$

$$\frac{\psi}{} \mathcal{P}_d \coloneqq \{P \subseteq \mathbb{R}^d \mid P \text{ polytope} \}$$

$$\to \text{ semi-ring } (\mathcal{P}_d, \text{conv}, +)$$

$$\begin{aligned} & \text{semi-ring isomorphism: } \psi \left(\max_{i \in I} \left\{ \mathbf{a}_i^T \mathbf{x} \right\} \right) \coloneqq \text{conv} \left\{ \mathbf{a}_i \mid i \in I \right\} \\ \psi \left(\sum_{i \in I^+} \max \left\{ \mathbf{0}, \mathbf{w}_i^T \mathbf{x} \right\} \right) &= \sum_{i \in I^+} \psi \left(\max \left\{ \mathbf{0}, \mathbf{w}_i^T \mathbf{x} \right\} \right) = \sum_{i \in I^+} \text{conv} \left\{ \mathbf{0}, \mathbf{w}_i \right\} \end{aligned}$$

Question:
$$\exists \mathbf{x} \in \mathbb{R}^d$$
: $\phi(\mathbf{x}) := \sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\} - \sum_{i \in I^-} \max\{0, \mathbf{w}_i^T \mathbf{x}\} > 0$?

$$\mathcal{F}_d \coloneqq \{f: \mathbb{R}^d \to \mathbb{R} \mid f \text{ CPWL, convex, p.h.} \}$$

$$\to \text{ semi-ring } (\mathcal{F}_d, \max, +)$$

$$\psi \quad \mathcal{P}_d \coloneqq \{P \subseteq \mathbb{R}^d \mid P \text{ polytope} \}$$

$$\to \text{ semi-ring } (\mathcal{P}_d, \text{conv}, +)$$

semi-ring isomorphism:
$$\psi(\max_{i \in I} \{\mathbf{a}_i^T \mathbf{x}\}) := \text{conv} \{\mathbf{a}_i \mid i \in I\}$$

$$\psi(\sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\}) = \sum_{i \in I^+} \psi(\max\{0, \mathbf{w}_i^T \mathbf{x}\}) = \sum_{i \in I^+} \text{conv} \{\mathbf{0}, \mathbf{w}_i\} =: Z^+(\text{zonotope})$$

Question:
$$\exists \mathbf{x} \in \mathbb{R}^d$$
: $\phi(\mathbf{x}) := \sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\} - \sum_{i \in I^-} \max\{0, \mathbf{w}_i^T \mathbf{x}\} > 0$?

$$\mathcal{F}_d \coloneqq \{f : \mathbb{R}^d \to \mathbb{R} \mid f \text{ CPWL, convex, p.h.}\}\ o \text{semi-ring } (\mathcal{F}_d, \max, +)$$
 $\xrightarrow{\psi} \mathcal{P}_d \coloneqq \{P \subseteq \mathbb{R}^d \mid P \text{ polytope}\}\ o \text{semi-ring } (\mathcal{P}_d, \text{conv}, +)$

semi-ring isomorphism:
$$\psi(\max_{i \in I} \{\mathbf{a}_i^T \mathbf{x}\}) := \text{conv} \{\mathbf{a}_i \mid i \in I\}$$

$$\psi(\sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\}) = \sum_{i \in I^+} \psi(\max\{0, \mathbf{w}_i^T \mathbf{x}\}) = \sum_{i \in I^+} \text{conv} \{\mathbf{0}, \mathbf{w}_i\} =: Z^+(\text{zonotope})$$

Question:
$$\exists \mathbf{x} \in \mathbb{R}^d : \phi(\mathbf{x}) := \underbrace{\sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\}}_{\mapsto Z^+} - \underbrace{\sum_{i \in I^-} \max\{0, \mathbf{w}_i^T \mathbf{x}\}}_{\nearrow} > 0?$$

semi-ring isomorphism:
$$\psi(\max_{i \in I} \{\mathbf{a}_i^T \mathbf{x}\}) := \text{conv} \{\mathbf{a}_i \mid i \in I\}$$

$$\psi(\sum_{i \in I^+} \max\{0, \mathbf{w}_i^T \mathbf{x}\}) = \sum_{i \in I^+} \psi(\max\{0, \mathbf{w}_i^T \mathbf{x}\}) = \sum_{i \in I^+} \text{conv} \{\mathbf{0}, \mathbf{w}_i\} =: Z^+(\text{zonotope})$$

Observation

$$\exists \mathbf{x} \in \mathbb{R}^d: \quad \sum \max\{0, \mathbf{w}_i^T \mathbf{x}\} - \sum \max\{0, \mathbf{w}_i^T \mathbf{x}\} > 0 \quad \Longleftrightarrow \quad Z^+ \not\subseteq \mathbf{Z}^-$$

ReLU-Layer Positivity equivalent to complement of Zonotope Containment

Summary

► Relation between cuts in (di-)graphs and elementary properties of ReLU layers via graphical hyperplane arrangements.

- ► Relation between cuts in (di-)graphs and elementary properties of ReLU layers via graphical hyperplane arrangements.
- ► Injectivity is coNP-complete.

- ▶ Relation between cuts in (di-)graphs and elementary properties of ReLU layers via graphical hyperplane arrangements.
- ► Injectivity is coNP-complete.
- ▶ Injectivity is fixed parameter tractable for *d*.

- ▶ Relation between cuts in (di-)graphs and elementary properties of ReLU layers via graphical hyperplane arrangements.
- ► Injectivity is coNP-complete.
- ▶ Injectivity is fixed parameter tractable for *d*.
- ► Surjectivity is polynomial equivalent to positivity and both are NP-complete.

- ▶ Relation between cuts in (di-)graphs and elementary properties of ReLU layers via graphical hyperplane arrangements.
- ► Injectivity is coNP-complete.
- ▶ Injectivity is fixed parameter tractable for *d*.
- Surjectivity is polynomial equivalent to positivity and both are NP-complete.
- Positivity is equivalent to (complement of) zonotope containment

Summary

- ▶ Relation between cuts in (di-)graphs and elementary properties of ReLU layers via graphical hyperplane arrangements.
- Injectivity is coNP-complete.
- Injectivity is fixed parameter tractable for d.
- Surjectivity is polynomial equivalent to positivity and both are NP-complete.
- Positivity is equivalent to (complement of) zonotope containment

Open Questions

Is injectivity FPT for deep neural networks?

Summary

- ▶ Relation between cuts in (di-)graphs and elementary properties of ReLU layers via graphical hyperplane arrangements.
- ► Injectivity is coNP-complete.
- Injectivity is fixed parameter tractable for d.
- Surjectivity is polynomial equivalent to positivity and both are NP-complete.
- Positivity is equivalent to (complement of) zonotope containment

Open Questions

- Is injectivity FPT for deep neural networks?
- How can we characterize surjectivity for more than one output neuron?

Summary

- ▶ Relation between cuts in (di-)graphs and elementary properties of ReLU layers via graphical hyperplane arrangements.
- ► Injectivity is coNP-complete.
- Injectivity is fixed parameter tractable for d.
- Surjectivity is polynomial equivalent to positivity and both are NP-complete.
- Positivity is equivalent to (complement of) zonotope containment

Open Questions

- Is injectivity FPT for deep neural networks?
- How can we characterize surjectivity for more than one output neuron?
- ▶ Is zonotope containment FPT for parameter *d*??

Thank you for your attention!